The need to store large quantities of hydrogen in large diameter steel vessels under high pressures results in shell thicknesses that are too large to produce by most steel mills and not practical to fabricate. Accordingly, a research program was undertaken by Oak Ridge National Laboratory to develop a new concept of combining steel with concrete to construct such vessels economically and practically. The concept is to fabricate vessels where the steel shell thickness is approximately one half that required to resist the hoop forces due to internal pressure. As such, the steel shell is designed to carry the full amount of the longitudinal forces in the vessel but only one half of the hoop loads due to internal pressure. The other half of the hoop loads is carried by a prestressed and reinforced concrete shell. In large diameter vessels the cost of the shell can further be reduced by using layered steel shell construction rather than solid wall construction. Such shell construction has also the added advantage of easily venting the hydrogen that permeates through the steel shell directly to the atmosphere through vent holes. This mechanism prevents the hydrogen from damaging the steel shell. The theoretical formulation of the steel concrete shell design is presented in this paper. In addition, details of a full scale mock up vessel designed, fabricated, and tested to prove the proposed methodology is given.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.