The effects of sulfur content on the fracture toughness properties of 2 1/4Cr-1 Mo steel were evaluated at test temperatures above, at, and below the nil ductility transition temperature (NDTT) of −23°C (−10°F). Small, 12.7-mm (0.5-in.) thick compact tension specimen results were combined with J-integral, Equivalent Energy, and Crack Opening Displacement analytical techniques to provide KIc results up to 22°C (72°F). It was found that the sulfur content of this steel has a large detrimental effect on KIc at the NDTT and above, where microvoid coalescence is the fracture mode. Sulfur has no significant effect at −73°C (−100°F) where cleavage occurs. These results also indicate that the higher Charpy V-notch energy at NDTT, shown by lower sulfur steels, is translatable into increased fracture resistance.

This content is only available via PDF.
You do not currently have access to this content.