Abstract

This work provide a thorough examination of the J-integral and plastic limit load for a circumferential through-wall fracture in an elbow reinforced with a bonded composite wrap under internal pressure. A three-dimensional (3D) finite element (FE) method is employed to evaluate the ductility of the structure and predict its failure behavior under varying conditions. The analysis systematically investigates the influence of key parameters, including the elbow angle (ψ), structural thickness (er), the ratio (Rm/t), and pipe material properties. The results are compared against existing analytical solutions in the literature, which are derived from detailed 3D FE limit analysis and are considered to provide reliable benchmarks. These solutions contribute valuable insights for the plastic analysis of pressurized pipes and the estimation of nonlinear fracture mechanics parameters using the reference stress method. To quantify the variability in the pressure limit, a probabilistic approach is employed using the Monte Carlo method. Structural failure probability is assessed by accounting for both model uncertainty and statistical variability in the input data. Three probability distribution functions—the ninth-order polynomial, the Lorentzian, and the Gaussian—are examined to characterize the uncertainty. Among these, the Gaussian distribution proves to be the most suitable for approximating the probability density function, offering a reliable estimate of the mean pressure limit. The study highlights that uncertainty in the pressure limit parameter significantly affects failure probability and contributes to a reduction in the overall structural lifespan. These findings provide essential guidance for the design and reliability assessment of composite-reinforced pressurized piping systems.

References

1.
Mechab
,
B.
,
Serier
,
B.
,
Bachir Bouiadjra
,
B. A.
,
Kaddouri
,
K.
, and
Feaugas
,
X.
,
2011
, “
Linear and Non-Linear Analyses for Semi-Elliptical Surface Cracks in Pipes Under Bending
,”
Int. J. Pressure Vessels Piping
,
88
(
1
), pp.
57
63
.10.1016/j.ijpvp.2010.11.001
2.
Mechab
,
B.
,
Serier
,
B.
,
Kaddouri
,
K.
, and
Bachir Bouiadjra
,
B. A.
,
2014
, “
Probabilistic Elastic Plastic Analysis of Cracked Pipes Subjected to Internal Pressure Loads
,”
Nucl. Eng. Des.
,
275
, pp.
281
286
.10.1016/j.nucengdes.2014.05.008
3.
Metehri
,
A.
,
Mechab
,
B.
, and
Bachir Bouiadjra
,
B.
,
2024
, “
A New Investigation Used to Predict the Burst Pressure in Straight Corroded Pipes Under Internal Pressure
,”
Mil. Tech. Cour.
,
72
(
4
), pp.
1747
1771
.10.5937/vojtehg72-50357
4.
Fezazi
,
A. I.
,
Mechab
,
B.
,
Salem
,
M.
, and
Serier
,
B.
,
2021
, “
Numerical Prediction of the Ductile Damage for Axial Cracks in Pipe Under Internal Pressure
,”
Frattura ed Integrità Strutturale
,
15
(
58
), pp.
231
241
.10.3221/IGF-ESIS.58.17
5.
Jang
,
Y.-Y.
,
Jeong
,
J.-U.
,
Huh
,
N.-S.
,
Kim
,
K.-S.
, and
Cho
,
W.-Y.
,
2015
, “
Closed-Form Solutions for Stress Intensity Factor and Elastic Crack Opening Displacement for Circumferential Through-Wall Cracks in the Interface Between an Elbow and a Straight Pipe Under Internal Pressure
,”
J. Korean Soc. Manuf. Technol. Eng.
,
24
(
5
), pp.
553
560
.
6.
Kim
,
C.-G.
,
Bae
,
K.-D.
,
Nam
,
H.-S.
, and
Kim
,
Y.-J.
,
2014
, “
J Estimation of Circumferential Through-Wall Intrados Center Cracked Elbows Under In-Plane Bending
,”
Proc. Mater. Sci.
,
3
, pp.
886
893
.10.1016/j.mspro.2014.06.144
7.
Kim
,
C. G.
,
Bae
,
K. D.
,
Kim
,
Y. J.
,
Oh
,
Y. J.
, and
Budden
,
P. J.
,
2015
, “
Reference Stress Based J and COD Estimation of Circumferential Through-Wall Cracked Elbows Under in-Plane Bending
,”
Eng. Fract. Mech.
,
142
, pp.
303
317
.10.1016/j.engfracmech.2015.06.022
8.
Žmindák, M., Meško, J., Pelagić, Z., Zrak, A., 2014, “Finite Element Analysis of Crack Growth in Pipelines,”
Manuf. Technol.
, 14(1), pp. 116--122.10.21062/ujep/x.2014/a/1213-2489/MT/14/1/116
9.
Kim
,
Y.-J.
,
Park
,
K.-H.
, and
Lee
,
J.-H.
,
2021
, “
Corrosion Effects on Crack Growth in Pipelines: A Numerical Approach
,”
Corros. Sci.
,
186
, p.
109449
.
10.
Kim
,
Y.-J.
,
Cho
,
M.-H.
, and
Lee
,
S.-W.
,
2016
, “
Experimental and Numerical Evaluation of Crack Resistance in Pipeline Elbows
,”
Int. J. Mech. Sci.
,
175
, p.
105512
.
11.
Huang
,
Y.
,
Qin
,
G.
, and
Yang
,
M.
,
2023
, “
A Risk-Based Approach to Inspection Planning for Pipelines Considering the Coupling Effect of Corrosion and Dents
,”
Process Saf. Environ. Prot.
,
180
, pp.
588
600
.10.1016/j.psep.2023.10.025
12.
Kim
,
Y.-J.
,
Lee
,
J.-H.
, and
Park
,
K.-H.
,
2020
, “
Effects of Temperature Variations on Crack Propagation in Pipelines: A Numerical Investigation
,”
Int. J. Pressure Vessels Piping
,
179
, p.
104007
.10.1016/j.ijpvp.2020.104007.
13.
Zhao
,
H.
,
Liang
,
X.
,
Yang
,
Z.
,
He
,
P.
, and
Zhao
,
B.
,
2024
, “
Experimental and Numerical Analysis of the Impact of Corrosion on the Failure Pressure of API 5 L X65 Pipeline
,”
Mar. Sci. Eng.
,
12
(
10
), p.
1810
.10.3390/jmse12101810
14.
Wang
,
Y.
, and
Xu
,
F.
,
2021
, “
Real-Time Monitoring Systems for Pipeline Crack Detection: A Review
,”
Sensors
,
21
(
8
), p.
2782
.
15.
Zhang
,
W.
,
Liu
,
Y.
, and
Xu
,
G.
,
2020
, “
Thermal Stress and Crack Growth in Pipelines Under Thermal Cycling
,”
Int. J. Pressure Vessels Piping
,
179
, p.
104007
.
16.
Mechab
,
B.
,
Chioukh
,
N.
,
Mechab
,
B.
, and
Serier
,
B.
,
2018
, “
Probabilistic Fracture Mechanics for Analysis of Longitudinal Cracks in Pipes Under Internal Pressure
,”
J. Failure Anal. Prev.
,
18
(
6
), pp.
1643
1651
.10.1007/s11668-018-0564-8
17.
Mechab
,
B.
,
Salem
,
M.
,
Medjahdi
,
M.
, and
Serier
,
B.
,
2020
, “
Probabilistic Elastic Plastic Fracture Mechanics Analysis of Propagation of Cracks in Pipes Under Internal Pressure
,”
Frattura ed Integrità Strutturale
,
14
(
54
), pp.
202
210
.10.3221/IGF-ESIS.54.15
18.
Salem
,
M.
,
Mechab
,
B.
,
Berrahou
,
M.
,
Bachir Bouiadjra
,
B. A.
, and
Serier
,
B.
,
2019
, “
Failure Analyses of Propagation of Cracks Repaired Pipe Under Internal Pressure
,”
J. Failure Anal. Prev.
,
19
(
1
), pp.
212
218
.10.1007/s11668-019-00592-3
19.
Alexander
,
C.
, and
Ochoa
,
O. O.
,
2010
, “
Extending Onshore Pipeline Repair to Offshore Steel Risers With Carbon–Fiber Reinforced Composites
,”
Compos. Struct.
,
92
(
2
), pp.
499
507
.10.1016/j.compstruct.2009.08.034
20.
Benyahia
,
F.
,
Lbedah
,
A. A.
, and
Bachir Bouiadjra
,
B.
,
2014
, “
Stress Intensity Factor for Repaired Circumferential Cracks in Pipe With Bonded Composite Wrap
,”
ASME J. Pressure Vessel Technol.
,
136
(
4
), p.
041201
.10.1115/1.4026022
21.
Hibbitt, Karlsson & Sorensen, Inc.
,
2014
,
ABAQUS/CAE, User's Manual, Ver 6.14
,
Hibbitt, Karlsson & Sorensen, Inc
., France.
22.
Kim
,
Y.-J.
,
Kim
,
J.-S.
,
Park
,
Y.-J.
, and
Kim
,
Y.-J.
,
2004
, “
Elastic-Plastic Fracture Mechanics Method. for Finite Internal Axial Surface Cracks in Cylinders
,”
Eng. Fract. Mech.
,
71
(
7–8
), pp.
925
944
.10.1016/S0013-7944(03)00159-0
23.
Hill
,
R.
,
1998
, “
The Mathematical Theory of Plasticity
,”
Oxford Engineering Science Series
,
Oxford University Press, Clarendon Press
,
Oxford, New York
, p.
11
.
24.
Zahoor
,
A.
,
Wilkowski
,
G.
,
Abou-Sayed
,
I.
,
Marschall
,
C.
,
Broek
,
D.
,
Sampath
,
S.
,
Rhee
,
H.
, and
Ahmad
,
J.
,
1982
, “
Instability Predictions for Circumferentially Cracked Type-304 Stainless-Steel Pipes Under Dynamic Loading
,”
Battelle Columbus Laboratories
,
Columbus, OH
, Report No. p59.EPRI-NP–2347-Vol.1.
25.
Kim
,
Y. J.
,
Shim
,
D. J.
,
Huh
,
N.-S.
, and
Kim
,
Y.-J.
,
2002
, “
Plastic Limit Pressures for Cracked Pipes Using Finite Element Limit Analyses
,”
Int. J. Pressure Vessel Piping
,
79
(
5
), pp.
321
330
.10.1016/S0308-0161(02)00031-5
26.
Ainsworth
,
R. A.
,
1984
, “
The Assessment of Defects in Structures of Strain Hardening Materials
,”
Eng. Fract. Mech.
,
19
(
4
), pp.
633
642
.10.1016/0013-7944(84)90096-1
27.
R6
,
2001
,
Assessment of the Integrity of Structures Containing Defects
,
British Energy Generation Ltd
.,
Gloucester
.
You do not currently have access to this content.