Abstract

In this study, an attempt is made that the local approach for fracture analysis of sharp notches under static loading proposed by the author extends to fatigue limit loading. Under the assumption that the empirical equation of determining the fracture toughness under static loading proposed by the author is properly employed under fatigue limit loading, a local approach+ for the fatigue limit analysis of notched components is proposed. It is a united method that combines the local approach proposed in Yan (2023, “A Local Approach for Fracture Analysis of Sharp Notches Under Mode I Loading,” Eng Frac. Mech., 290(2023), p. 109404) with the empirical equation of determining the fracture toughness proposed in Yan (2023, “A Local Approach for Fracture Analysis of Sharp Notches Under Mode I Loading,” Eng Frac. Mech., 290(2023), p. 109404) for fatigue limit analysis of notched components. According to the local approach+, the basic fatigue test data required to be known are the fatigue limit σ0 of the plain material and fatigue limit σ0n of a notched component (sample notch) By using the two material data, fatigue limit of any notch, σ0n, can be predicted by the local approach+. Validation verification by experimental data from the literature shows that the predicted fatigue limit, σ0n, has high accuracy.

References

1.
Neuber
,
H.
,
1936
, “
Zur Theorie Der Technischen Formzahl
,”
Forschg. Ing-Wes.
,
7
(
6
), pp.
271
274
.10.1007/BF02584908
2.
Neuber
,
H.
,
1958
,
Theory of Notch Stresses: Principles for Exact Calculation of Strength With Reference to Structural Form and Material
, 2nd ed.,
Springer Verlag
,
Berlin, Germany
.
3.
Peterson
,
R. E.
,
1959
, “
Notch Sensitivity
,”
Metal Fatigue
,
G.
Sines
and
J. L.
Waisman
, eds.,
McGraw-Hill
,
New York
, pp.
293
306
.
4.
Taylor
,
D.
,
2007
,
The Theory of Critical Distances: A New Perspective in Fracture Mechanics
,
Elsevier
,
Oxford, UK
.
5.
Susmel
,
L.
,
2009
, “
Multiaxial Notch Fatigue: From Nominal to Local Stress/Strain Quantities
,”
Woodhead & CRC
,
Cambridge, UK
.
6.
Berto
,
F.
, and
Lazzarin
,
P.
,
2014
, “
Recent Developments in Brittle and quasi-brittle Failure Assessment of Engineering Materials by Means of Local Approaches
,”
Mater. Sci. Eng. R
,
75
, pp.
1
48
.10.1016/j.mser.2013.11.001
7.
Lazzarin
,
P.
, and
Zambardi
,
R.
,
2001
, “
A Finite Volume-Energy Based Approach to Predict the Static and Fatigue Behaviour of Components With Sharp V-Shaped Notches
,”
Int. J. Fract.
,
112
(
3
), pp.
275
298
.10.1023/A:1013595930617
8.
Lazzarin
,
P.
, and
Lazzarin
,
F. X.
,
2005
, “
Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-Notches
,”
Int. J. Fract.
,
135
(
1–4
), pp.
161
185
.10.1007/s10704-005-3943-6
9.
Taylor
,
D.
,
2004
, “
Predicting the Fracture Strength of Ceramic Materials Using the Theory of Critical Distances
,”
Eng. Frac. Mech.
,
71
(
16–17
), pp.
2407
2416
.10.1016/j.engfracmech.2004.01.002
10.
Taylor
,
D.
,
Merlo
,
M.
,
Pegley
,
R.
, and
Cavatorta
,
M. P.
,
2004
, “
The Effect of Stress Concentrations on the Fracture Strength of Polymethylmethacrylate
,”
Mater. Sci. Eng.
,
382
(
1–2
), pp.
288
294
.10.1016/j.msea.2004.05.012
11.
Taylor
,
D.
,
Cornetti
,
P.
, and
Pugno
,
N.
,
2005
, “
The Fracture Mechanics of Finite Crack Extension
,”
Eng. Frac. Mech.
,
72
(
7
), pp.
1021
1038
.10.1016/j.engfracmech.2004.07.001
12.
Susmel
,
L.
,
Taylor
,
D.
,
2010
, “
An Elasto-Plastic Reformulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components Failing in the Low/Medium-Cycle Fatigue Regime
,”
J. Eng. Technol.
,
132
, p.
210021
.10.1115/1.4000667
13.
Susmel
,
L.
, and
Taylor
,
D.
,
2007
, “
A Novel Formulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components in the Medium-Cycle Fatigue Regime
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
7
), pp.
567
81
.10.1111/j.1460-2695.2007.01122.x
14.
Susmel
,
L.
, and
Taylor
,
D.
,
2008
, “
The Modified Wöhler Curve Method Applied Along With the Theory of Critical Distances to Estimate Finite Life of Notched Components Subjected to Complex Multiaxial Loading Paths
,”
Fatigue Fract. Eng. Mater. Struct.
, 31(12), pp. 1047–1064.10.1111/j.1460-2695.2008.01296.x
15.
Yang
,
X. G.
,
Wang
,
J. K.
, and
Liu
,
J. L.
,
2011
, “
High Temperature LCF Life Prediction of Notched DS Ni-Based Superalloy Using Critical Distance Concept
,”
Int. J. Fatigue
,
33
(
11
), pp.
1470
1476
.10.1016/j.ijfatigue.2011.05.018
16.
Yan
,
X. Q.
,
2023
, “
A Local Approach for Fracture Analysis of Sharp Notches Under Mode I Loading
,”
Eng Frac. Mech.
,
290
(
2023
), p.
109404
.10.1016/j.engfracmech.2023.109404
17.
Yan
,
X. Q.
,
2025
, “
A Local Approach for Fracture Analysis of Sharp Notches Under Mode IIII Loading
,”
ASME J. Pressure Vessel Technol.
,
147
(
3
), p.
031503
.10.1115/1.4067592
18.
Yan
,
X. Q.
,
2023
,
Multiaxial Notch Fracture and Fatigue
,
CRC Press
,
Boca Raton, London, and New York
, p.
367
.
19.
Lazzarin
,
P.
, and
Filippi
,
S.
,
2006
, “
A Generalized Stress Intensity Factor to be Applied to Rounded V-Shaped Notches
,”
Int. J. Solids Struct
,
43
(
9
), pp.
2461
2478
.10.1016/j.ijsolstr.2005.03.007
20.
Yan
,
X. Q.
,
2022
, “
A Local Approach for Fracture Analysis of V- Notch Specimens Under I Loading
,”
Eng. Frac. Mech.
,
274
(
2022
), p.
108753
.10.1016/j.engfracmech.2022.108753
21.
Frost
,
N. E.
,
1957
, “
Non-Propagating Cracks in V-Notched Specimens Subjected to Fatigue Loadings
,”
Aeronaut. Q.
,
8
(
1
), pp.
1
20
.10.1017/S0001925900010362
22.
Murakami
,
Y.
,
1989
,
Stress Intensity Factors Handbook
,
Pergamon Press World Publishing Corporation
,
Beijing, China
.
23.
Weiss
,
B.
,
Stickler
,
R.
,
Lukas
,
P.
, and
Kunz
,
L.
,
1986
, “
Non-Damaging Notches in Fatigue: A Short Crack Problem?
,”
2nd International, Workshop on Small Fatigue Cracks
,
Santa Barbara, CA
, pp.
5
10
.
24.
DuQuesnay
,
D. L.
,
Yu
,
M.
, and
Topper
,
T. H.
,
1988
, “
An Analysis of Notch Size Effect on the Fatigue Limit
,”
J. Test. Eval.
,
4
, pp.
375
385
.10.1520/JTE11081J
25.
Tada
,
H.
,
1971
, “
A Note on the Finite Width Corrections to the Stress Intensity Factor
,”
Eng. Frac. Mech.
,
3
(
3
), pp.
345
347
.10.1016/0013-7944(71)90043-9
26.
Lukas
,
P.
, and
Kunz
,
L.
,
1981
, “
Influence of Notches on High Cycle Fatigue Life
,”
Mater. Sci. Eng.
,
47
(
2
), pp.
93
98
.10.1016/0025-5416(81)90213-5
27.
Yan
,
X. Q.
, “
A Local Approach for Fatigue Life Analysis of Notched Components
,”
ASME J. Pressure Vessel Technol.
, (submitted).
28.
Frost
,
N. E.
,
1959
, “
A Relation Between the Critical Alternating Propagation Stress and Crack Length for Mild Steel
,”
Proceedings of the Institution of Mechanical Engineers, SAGE, Thousand Oaks, CA
, Vol.
173
, pp.
811
836
.10.1243/pime_proc_1959_173_065_02
29.
Smith
,
R. A.
, and
Miller
,
K. J.
,
1978
, “
Prediction of Fatigue Regimes in Notched Components
,”
Int. J. Mech. Sci.
,
20
(
4
), pp.
201
206
.10.1016/0020-7403(78)90082-6
30.
Gómez
,
F. J.
,
Guinea
,
G. V.
, and
Elices
,
M.
,
2006
, “
Failure Criteria for Linear Elastic Materials With U-Notches
,”
Int. J. Fract.
,
141
(
1–2
), pp.
99
113
.10.1007/s10704-006-0066-7
31.
Yan
,
X. Q.
,
2023
, “
Research Into Applicability of Wöhler Curve Method for Low-Cycle Fatigue of Metallic Materials
,”
J. Harbin Inst. Technol. (New Series)
,
31
(
2
), pp.
22
37
.
32.
Christensen
,
R. M.
,
2014
, “
Failure Mechanics—Part I: The Coordination Between Elasticity Theory and Failure Theory for All Isotropic Materials
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081001
.10.1115/1.4027753
You do not currently have access to this content.