Abstract

This paper focuses on the X80 pipeline with double corrosion defects, and the pipe–soil interaction model is established in abaqus to investigate the seismic response of the buried pipeline in permafrost regions under the shear vertical (SV) waves. The stress response of the pipeline is analyzed under varying corrosion defect spacings and internal pressures, and the effects of different incident angles on stress, acceleration, and displacement responses are examined. The results show that under the action of obliquely incident SV waves, when the axial spacing between two corrosion defects exceeds four times the pipe wall thickness, their interaction becomes negligible. In nonoperating and operating states, the stress response of the pipeline increases with the increase of the incident angle, and when incidence inclination is 30 deg and incidence azimuth is 90 deg, SV wave is the most harmful to the pipeline. Additionally, the stress response of pressurized pipelines is significantly higher than that of unpressurized pipelines, although the latter is more sensitive to changes in the incident angle. On the other hand, the incident azimuth angle has less effect on the vertical acceleration and displacement of the pipeline, but more effect on the lateral and axial acceleration and displacement. And the incident inclination angle has a pronounced effect on acceleration and displacement in all three directions, with larger angles resulting in more pronounced effects.

References

1.
Newmark
,
N. M.
,
1968
, “
Problems in Wave Propagation in Soil and Rock
,”
Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials
,
University of New Mexico Press
,
Albuquerque, NM
, pp.
7
26
.
2.
Parmelee
,
R. A.
, and
Ca
,
L.
,
1975
, “
Seismic Soil-Structure Interaction of Buried Pipelines
,”
Proceedings of the National Conference on Earthquake Engineering, Ann Arbor, Michigan
, pp.
406
415
.
3.
Shinozuka
,
M.
, and
Kawakami
,
H.
,
1977
, “
Underground Pipe Damages and Ground Characteristics
,”
Proceedings of Lifeline Earthquake Engineering Specialty Conference
, Columbia University, Department of Civil Engineering and Engineering Mechanics, Aug. 30–31, pp.
293
307
.https://nehrpsearch.nist.gov/article/PB-285%20987/4/XAB
4.
Wang
,
R. L.
, and
Cheng
,
K.
,
1979
, “
Seismic Response Behavior of Buried Pipelines
,”
ASME J. Pressure Vessel Technol.
,
101
(
1
), pp.
21
30
.10.1115/1.3454594
5.
Datta
,
S. K.
,
Shah
,
A. H.
, and
El-Akily
,
N.
,
1982
, “
Dynamic Behavior of a Buried Pipe in a Seismic Environment
,”
ASME J. Appl. Mech.
,
49
(
1
), pp.
141
148
.10.1115/1.3161957
6.
Matsubara
,
K.
, and
Hoshiya
,
M.
,
2000
, “
Soil Spring Constants of Buried Pipelines for Seismic Design
,”
J. Eng. Mech.
,
126
(
1
), pp.
76
83
.10.1061/(ASCE)0733-9399(2000)126:1(76)
7.
Ogawa
,
Y.
, and
Koike
,
T.
,
2001
, “
Structural Design of Buried Pipelines for Severe Earthquakes
,”
Soil Dyn. Earthquake Eng.
,
21
(
3
), pp.
199
209
.10.1016/S0267-7261(01)00005-7
8.
Hindy
,
A.
, and
Novak
,
M.
,
1979
, “
Earthquake Response of Underground Pipelines
,”
Earthquake Eng. Struct. Dyn.
,
7
(
5
), pp.
451
476
.10.1002/eqe.4290070506
9.
Kouretzis
,
G. P.
,
Karamitros
,
D. K.
, and
Sloan
,
S. W.
,
2015
, “
Analysis of Buried Pipelines Subjected to Ground Surface Settlement and Heave
,”
Can. Geotech. J.
,
52
(
8
), pp.
1058
1071
.10.1139/cgj-2014-0332
10.
Lee
,
D. H.
,
Kim
,
B. H.
,
Jeong
,
S. H.
,
Jeon
,
J. S.
, and
Lee
,
T. H.
,
2016
, “
Seismic Fragility Analysis of a Buried Gas Pipeline Based on Nonlinear Time-History Analysis
,”
Int. J. Steel Struct.
,
16
(
1
), pp.
231
242
.10.1007/s13296-016-3017-9
11.
De Risi
,
R.
,
De Luca
,
F.
,
Kwon
,
O. S.
, and
Sextos
,
A.
,
2018
, “
Scenario-Based Seismic Risk Assessment for Buried Transmission Gas Pipelines at Regional Scale
,”
J. Pipeline Syst. Eng. Pract.
,
9
(
4
), p.
04018018
.10.1061/(ASCE)PS.1949-1204.0000330
12.
Psyrras
,
N.
,
Kwon
,
O.
,
Gerasimidis
,
S.
, and
Sextos
,
A.
,
2019
, “
Can a Buried Gas Pipeline Experience Local Buckling During Earthquake Ground Shaking?
,”
Soil Dyn. Earthquake Eng.
,
116
, pp.
511
529
.10.1016/j.soildyn.2018.10.027
13.
Xing
,
S.
,
Wu
,
T.
,
Li
,
Y.
, and
Miyamoto
,
Y.
,
2022
, “
Shaking Table Test and Numerical Simulation of Shallow Foundation Structures in Seasonal Frozen Soil Regions
,”
Soil Dyn. Earthquake Eng.
,
159
, p.
107339
.10.1016/j.soildyn.2022.107339
14.
Li
,
X.
,
Yang
,
Z.
,
Liu
,
X.
,
Chen
,
G.
, and
Jing
,
H.
,
2023
, “
Analysis of Seismic Time-History Effect of Single Corroded Pipeline in Seasonally Frozen Soil Region
,”
Int. J. Pressure Vessels Piping
,
206
, p.
105035
.10.1016/j.ijpvp.2023.105035
15.
Liu
,
J.
,
Du
,
Y.
,
Du
,
X.
,
Wang
,
Z.
, and
Wu
,
J.
,
2006
, “
3D Viscous-Spring Artificial Boundary in Time Domain
,”
Earthquake Eng. Eng. Vib.
,
5
(
1
), pp.
93
102
.10.1007/s11803-006-0585-2
16.
Kaynia
,
A. M.
, and
Novak
,
M.
,
1992
, “
Response of Pile Foundations to Rayleigh Waves and Obliquely Incident Body Waves
,”
Earthquake Eng. Struct. Dyn.
,
21
(
4
), pp.
303
318
.10.1002/eqe.4290210403
17.
Hatzigeorgiou
,
G. D.
, and
Beskos
,
D. E.
,
2010
, “
Soil–Structure Interaction Effects on Seismic Inelastic Analysis of 3-D Tunnels
,”
Soil Dyn. Earthquake Eng.
,
30
(
9
), pp.
851
861
.10.1016/j.soildyn.2010.03.010
18.
Zhao
,
M.
,
Duan
,
Y.
,
Huang
,
J.
,
Li
,
H.
,
Zhao
,
X.
, and
Du
,
X.
,
2022
, “
Analytical Solutions for Circular Composite-Lined Tunnels Under Obliquely Incident Seismic SV and P Waves
,”
Comput. Geotech.
,
151
, p.
104939
.10.1016/j.compgeo.2022.104939
19.
Huang
,
J.
,
Du
,
X.
,
Zhao
,
M.
, and
Zhao
,
X.
,
2017
, “
Impact of Incident Angles of Earthquake Shear (S) Waves on 3-D Non-Linear Seismic Responses of Long Lined Tunnels
,”
Eng. Geol.
,
222
, pp.
168
185
.10.1016/j.enggeo.2017.03.017
20.
Wang
,
X.
,
Chen
,
J.
, and
Xiao
,
M.
,
2019
, “
Seismic Responses of an Underground Powerhouse Structure Subjected to Oblique Incidence SV and P Waves
,”
Soil Dyn. Earthquake Eng.
,
119
, pp.
130
143
.10.1016/j.soildyn.2019.01.014
21.
Zhang
,
T.
,
Xu
,
Q.
,
Chen
,
J.
,
Wang
,
Y.
, and
Li
,
J.
,
2023
, “
Analysis Framework for the Seismic Performance of a Concrete High-Arch Dam Considering the Incident Direction and Oblique Incident Angle of Near-Fault SV-Waves
,”
Soil Dyn. Earthquake Eng.
,
173
, p.
108119
.10.1016/j.soildyn.2023.108119
22.
API
,
2021
, “
Fitness for Service
,”
American Petroleum Institute
,
New York
, Standard No. API 579.
23.
Bazyar
,
M. H.
, and
Song
,
C.
,
2017
, “
Analysis of Transient Wave Scattering and Its Applications to Site Response Analysis Using the Scaled Boundary Finite-Element Method
,”
Soil Dyn. Earthquake Eng.
,
98
, pp.
191
205
.10.1016/j.soildyn.2017.04.010
24.
Darvishi
,
R.
,
Lashgari
,
A.
, and
Jafarian
,
Y.
,
2024
, “
Predictive Models for Assessment of Buried Pipeline Response Under Seismic Landslides in Iran
,”
Trans. Geotech.
,
45
, p.
101208
.10.1016/j.trgeo.2024.101208
25.
Kuhlemeyer
,
R. L.
, and
Lysmer
,
J.
,
1973
, “
Finite Element Method Accuracy for Wave Propagation Problems
,”
J. Soil Mech. Found. Div.
,
99
(
5
), pp.
421
427
.10.1061/JSFEAQ.0001885
26.
Dai
,
J.
,
Wang
,
Z.
,
Wang
,
Z.
,
Wang
,
H.
,
Ma
,
J.
, and
Zhao
,
Z.
,
2023
, “
Shake Table Test and Numerical Analysis of the Seismic Response of Buried Long-Distance Pipeline Under Longitudinal Non-Uniform Excitation
,”
Structures
,
47
, pp.
1241
1249
.10.1016/j.istruc.2022.11.133
27.
ASME
,
2023
, “
Manual of Determining the Remaining Strength of Corroded Pipelines
,”
American Society of Mechanical Engineers
,
New York
, Standard No. ASME B31G.
28.
Li
,
X.
,
Chen
,
G.
,
Liu
,
X.
,
Ji
,
J.
, and
Han
,
L.
,
2021
, “
Analysis and Evaluation on Residual Strength of Pipelines With Internal Corrosion Defects in Seasonal Frozen Soil Region
,”
Appl. Sci.
,
11
(
24
), p.
12141
.10.3390/app112412141
29.
Cheng
,
X.
,
Ma
,
C.
,
Huang
,
R.
,
Huang
,
S.
, and
Yang
,
W.
,
2019
, “
Failure Mode Analysis of X80 Buried Steel Pipeline Under Oblique-Reverse Fault
,”
Soil Dyn. Earthquake Eng.
,
125
, p.
105723
.10.1016/j.soildyn.2019.105723
30.
Benjamin
,
A. C.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
, and
de Andrade
,
E. Q.
,
2006
, “
Burst Tests on Pipeline Containing Closely Spaced Corrosion Defects
,”
ASME
Paper No. OMAE2006-92131.10.1115/OMAE2006-92131
31.
Wen
,
Z.
,
Sheng
,
Y.
,
Jin
,
H.
,
Li
,
S.
,
Li
,
G.
, and
Niu
,
Y.
,
2010
, “
Thermal Elasto-Plastic Computation Model for a Buried Oil Pipeline in Frozen Ground
,”
Cold Reg. Sci. Technol.
,
64
(
3
), pp.
248
255
.10.1016/j.coldregions.2010.01.009
32.
Xiao
,
D.
,
Ma
,
W.
, and
Zhao
,
S.
,
2015
, “
Study of the Dynamic Parameters of Frozen Soil: Achievements and Prospects
,”
J. Glaciol. Geocryol.
,
37
(
6
), pp.
1611
1626
.10.7522/j.isnn.1000-0240.2015.0178
33.
Ma
,
J. L.
, and
Ding
,
H. P.
,
2013
, “
Comparative Study on Influence of Different Damping Values in Soil-Layer Seismic Response Analysis
,”
J. Disaster Prev. Mitigation Eng.
, 3(5), pp.
517
523
.10.13409/j.cnki.jdpme.2013.05.005
34.
Kwok
,
A. O.
,
Stewart
,
J. P.
,
Hashash
,
Y. M.
,
Matasovic
,
N.
,
Pyke
,
R.
,
Wang
,
Z.
, and
Yang
,
Z.
,
2007
, “
Use of Exact Solutions of Wave Propagation Problems to Guide Implementation of Nonlinear Seismic Ground Response Analysis Procedures
,”
J. Geotech. Geoenviron. Eng.
,
133
(
11
), pp.
1385
1398
.10.1061/(ASCE)1090-0241(2007)133:11(1385)
35.
Ma
,
S.
,
Chi
,
M.
,
Chen
,
X.
,
Chen
,
H.
, and
Xing
,
H.
,
2024
, “
Research on the Static-Dynamic Boundary Switch and Its Rationality Verification Method
,”
Acta Seismol. Sin.
,
46
(
1
), pp.
157
171
.10.11939/jass.20220136
36.
Xue
,
J.
,
Wang
,
X.
,
Ji
,
L.
, and
Dong
,
X.
,
2024
, “
Performance of Buried Pipeline Under Reverse Fault in Permafrost Region
,”
Int. J. Pressure Vessels Piping
,
207
, p.
105119
.10.1016/j.ijpvp.2023.105119
37.
Ministry of Housing and Urban-Rural Development of the People's Republic of China
,
2010
, “
Code for Seismic Design of Buildings
,”
China Architecture & Building Press
,
Beijing, China
, Standard No. GB 50011-2010 (in Chinese).
38.
China Earthquake Administration
,
2015
, “
Seismic Ground Motion Parameters Zonation Map of China
,”
Standards Press of China
,
Beijing, China
, Standard No. GB 18306-2015 (in Chinese).
39.
Assessment, E.S.P
.,
2005
, “
Pacific Earthquake Engineering Research Center
,”
University of California
,
Berkeley, CA
, https://peer.berkeley.edu/
You do not currently have access to this content.