Abstract

This study focuses on the design rules for hydrogen pipelines made of carbon steel (CS). The hydrogen-specific design guidelines available to date, namely, ASME B31.12, IGEM/TD/1 Supplement 2, and DVGW, are summarized in the first part of this study. The second part focuses on pipeline bends. The stress field of a pipe bend under combined internal pressure and in-plane bending is presented. The stress predictions of rigorous numerical models are compared with the code predictions and shortcomings are highlighted. Subsequently, a realistic application example of a buried hydrogen pipeline containing bends is presented. The differences in design requirements between the two codes for different material selections are shown. Finally, fatigue life predictions are established using the conventional “S–N” approach, as well as linear elastic fracture mechanics, highlighting the importance of considering cyclic loading conditions at early design phases of hydrogen projects.

References

1.
US Department of Energy (DOE) Hydrogen Program
,
2023
, “
DOE: 2023 Hydrogen Program Annual Merit Review and Peer Evaluation Meeting, PHMSA Hydrogen Pipeline Safety Regulations
,”
US DOT—PHMSA—Office of Pipeline Safety, Engineering and Research Division
,
Washington, DC
, June 5--8, https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/doe_h2_program.pdf
2.
ASME
,
2023
, “
Hydrogen Piping and Pipelines
,”
The American Society of Mechanical Engineers
,
New York
, Standard No. ASME B 31.12-2023.
3.
IGEM
,
2021
, “
High Pressure Hydrogen Pipelines
,”
Institution of Gas Engineers and Managers (IGEM)
,
Kegworth, UK
, Standard No. IGEM/TD/1.
4.
Steiner
,
M.
,
Marewski
,
U.
, and
Silcher
,
H.
,
2023
, “
DVGW-Projekt SyWeSt H2: ‘Stichprobenhafte Überprüfung von tahlwerkstoffen für Gasleitungen und Anlagen zur Bewertung auf Wasserstofftauglichkeit'
,”
Deutscher Verin des Gas- und Wasserfaches e.V.
,
Bonn, Germany
(in German).
5.
Pfeil
,
L. B.
,
1926
, “
The Effect of Occluded Hydrogen on the Tensile Strength of Iron
,”
Proc. R. Soc. London - Ser. A
,
112
(
760
), pp.
182
195
.10.1098/rspa.1926.0103
6.
Zapffe
,
C. A.
, and
Sims
,
C. E.
,
1941
, “
Hydrogen Embrittlement, Internal Stress and Defects in Steel
,”
Trans. AIME
,
145
(
1941
), pp.
225
271
.https://aimehq.org/resources/digital-library
7.
Beachem
,
C. D.
,
1972
, “
A New Model for Hydrogen-Assisted Cracking (Hydrogen ‘Embrittlement')
,”
Metall. Mater. Trans. B
,
3
(
2
), pp.
441
455
.10.1007/BF02642048
8.
Nagumo
,
M.
,
2004
, “
Hydrogen Related Failure of Steels—A New Aspect
,”
Mater. Sci. Technol.
,
20
(
8
), pp.
940
950
.10.1179/026708304225019687
9.
Neeraj
,
T.
,
Srinivasan
,
R.
, and
Li
,
J.
,
2012
, “
Hydrogen Embrittlement of Ferritic Steels: Observations on Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding
,”
Acta Mater.
,
60
(
13–14
), pp.
5160
5171
.10.1016/j.actamat.2012.06.014
10.
Islam
,
A.
,
Alam
,
T.
,
Sheibley
,
N.
,
Edmonson
,
K.
,
Burns
,
D.
, and
Hernandez
,
M.
,
2024
, “
Hydrogen Blending in Natural Gas Pipelines: A Comprehensive Review of Material Compatibility and Safety Considerations
,”
Int. J. Hydrogen Energy
,
93
, pp.
1429
1461
.10.1016/j.ijhydene.2024.10.384
11.
Hagen
,
A. B.
, and
Alvaro
,
A.
,
2020
, “
Hydrogen Influence on Mechanical Properties in Pipeline Steel—State of the Art
,” SINTEF Industry, Materials Integrity and Welding, Norway, UK.
12.
Djukic
,
M. B.
,
Bakic
,
G. M.
,
Sijacki Zeravcic
,
V.
,
Sedmak
,
A.
, and
Rajicic
,
B.
,
2019
, “
The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion
,”
Eng. Fract. Mech.
,
216
, p.
106528
.10.1016/j.engfracmech.2019.106528
13.
González
,
M. S.
, and
Hernandez
,
I. R.
,
2018
, “
Review: Hydrogen Embrittlement of Metals and Alloys in Combustion Engines
,”
Tecnol. Marcha
,
31
(2), pp.
3
13
.10.18845/tm.v31i2.3620
14.
ASTM
,
2021
, “
Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking
,”
ASTM
,
West Conshohocken, PA
, Standard No. ASTM G129.
15.
Wang
,
A.
,
van der Leun
,
K.
,
Peters
,
D.
, and
Buseman
,
M.
,
2020
, “
European Hydrogen Backbone. How a Dedicated Hydrogen Infrastructure Can Be Created
,”
Guidehouse
,
Utrecht, The Netherlands
.
16.
Gazis
,
E.
,
Jha
,
S.
, and
Martinez
,
V. A.
,
2020
, “
Hydrogen for a Net Zero GB: An Integrated Energy Market Perspective
,”
Aurora Energy Research
,
Oxford, UK
.
17.
Monsma
,
V.
,
Illson
,
T.
, and
Hussain
,
A.
,
2023
, “
Repurposing Pipelines for Hydrogen Transmisison
,”
Pipeline Gas J.
,
250
(
6
), pp.
1
8
.https://pageraftstaging.nxtbook.com/gulf_energy_information/pipeline_and_gas_journal/june_2023/spotlight_on_h2_pipelines_rep.html
18.
IGEM
,
2021
, “
Steel Pipelines for High Pressure Gas Transmission
,”
IGEM
,
Kegworth, UK
, Standard No. IGEM/TD/1.
19.
ISO
,
2019
, “
Petroleum and Natural Gas Industries—Steel Pipe for Pipeline Transportation Systems
,”
ISO
,
Brussels, Belgium
, Standard No. BS EN ISO 3183.
20.
ASME
,
2024
, “
ASME Code for Pressure Piping
,”
ASME
,
New York, NY,
Standard No. ASME B31.3.
21.
Steiner
,
M.
,
Marewski
,
U.
, and
Silcher
,
H.
,
2023
, “
DVGW-Projekt SyWeSt H2: ‘Investigation of Steel Material for Gas Pipelines and Plants for Assessment of Their Suitability With Hydrogen—Final Report'
,”
Deutscher Verin des Gas- und Wasserfaches e.V.
,
Bonn, Germany
.
22.
Tazedakis
,
A. S.
,
Voudouris
,
N.
,
Dourdounis
,
E.
,
Mannucci
,
G.
,
Di Vito
,
L. F.
, and
Fonzo
,
A.
,
2021
, “
Qualification of High-Strength Linepipes for Hydrogen Transportation Based on ASME B31.12 Code
,”
Pipeline Technol. J.
, 1, pp.
42
50
.https://www.pipeline-journal.net/articles/qualification-high-strength-linepipes-hydrogen-transportation-based-asme-b3112-code
23.
San Marchi
,
C.
, and
Somerday
,
B. P.
,
2012
, “
Technical Reference on Hydrogen Compatibility of Materials
,”
Sandia National Laboratories
,
Livermore, CA.
24.
Slifka
,
A. J.
,
Drexler
,
E. S.
,
Amaro
,
R. L.
,
Hayden
,
L. E.
,
Stalheim
,
D. G.
,
Lauria
,
D. S.
, and
Hrabe
,
N. W.
,
2018
, “
Fatigue Measurement of Pipeline Steels for the Application of Transporting Gaseous Hydrogen
,”
ASME J. Pressure Vessel Technol.
,
140
(
1
), p.
011407
.10.1115/1.4038594
25.
ASME
,
2017
, “
Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components
,” ASME, New York, NY, Standard No. ASME B31J.
26.
IGEM
,
2021
, “
Pipework Stress Analysis for Gas Industry Plant
,”
IGEM
, Kegworth, UK, Standard No. IGEM/TD/12 Edition 3 Communication 1834.
27.
Varelis
,
G. E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2012
, “
Pipe Elbows Under Strong Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), 011207.10.1115/1.4007293
28.
Varelis
,
G. E.
, and
Karamanos
,
S. A.
,
2015
, “
Low-Cycle Fatigue of Pressurized Steel Elbows Under In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011401
.10.1115/1.4027316
29.
Karamanos
,
S. A.
,
2016
, “
Mechanical Behavior of Steel Pipe Bends: An Overview
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
041203
.10.1115/1.4031940
30.
American Lifeline Alliance
,
2001
, “
Guidelines for the Design of Buried Steel Pipe, July 2001 (With Addenda Through February 2005)
,” Hyattsville, MD.
31.
TWI
,
2020
, “
Crackwise Version 6.2.0
,”
TWI
,
Cambridge, UK
.
32.
BS,
2019
, “
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,” BS, London, UK, Standard No. BS 7910.
33.
Newman
,
J. C.
, and
Raju
,
I. S.
,
1983
, “
Stress Intensity Factor Equation for Cracks in Three-Dimensional Finite Bodies
,”
Fracture Mechanics: Proceedings of 14th Symposium
, Vol.
I
: Theory and Analysis,
ASTM
,
Philadelphia
, PA, Paper No. STP 791.
34.
Ding
,
Y.
,
Yetisir
,
M.
, and
McDonald
,
H.
,
2012
, “
Residual Stress Modelling of Induction-Bent Pipes
,”
ASME
Paper No. PVP2012-78153.10.1115/PVP2012-78153
35.
Khajehpour
,
S.
, and
Yetisir
,
M.
,
2007
, “
Residual Stress Modelling of Pipe Bends
,”
Transactions of the SMiRT 19
, Toronto, ON, Canada, August 2007.https://repository.lib.ncsu.edu/server/api/core/bitstreams/36e5065b-4ce8-4428-82a7-04011a96c6c5/content
36.
Yetisir
,
M.
,
Rogge
,
R.
, and
Donaberger
,
R.
,
2005
, “
The Effect of Manufacturing Process on Residual Stresses of Pipe Bends
,”
ASME
Paper No. PVP2005-71581.10.1115/PVP2005-71581
37.
Pryce-Jenkins
,
V.
,
Heaps
,
W.
, and
Dib
,
E.
,
2019
, “
The Effect of Residual Longitudinal Compressive Stress in Onshore Buried Steel Pipelines
,”
Pipeline Technology Conference 2019,
Berlin, Germany, May 5--8.https://www.pipeline-conference.com/abstracts/effect-residual-longitudinal-compressive-stress-onshore-buried-steel-pipelines
You do not currently have access to this content.