Graphical Abstract Figure

A plate with two nonparallel cracks, a slanted edge crack and a horizontal crack, under remote tension.

Graphical Abstract Figure

A plate with two nonparallel cracks, a slanted edge crack and a horizontal crack, under remote tension.

Close modal

Abstract

Fracture mechanics has been used in Fitness-for-Service (FFS) assessments of structures containing cracks. The stress intensity factors (SIFs) at the crack tip are the key information in assessing the remaining service life of a cracked component. Extensive studies have been carried out on the mutual influence of adjacent parallel cracks. However, to date no solutions are available for nonparallel cracks. In the present analysis mode I (KI) and Mode II (KII) SIFs of a slanted-edge-crack affected by an adjacent nonparallel horizontal crack are obtained. KI and KII are evaluated for a wide range of the slanted edge crack angle β = 0 deg–70 deg, for various normalized horizontal (S/a2 = −0.4 to 2) and vertical (H/a2 = 0.4 and 2) separation distances and for several crack lengths. The problem is solved using a two-dimensional, plane strain, finite element model, which was successfully validated against presently available solutions. It is found that the presence of the horizontal crack always amplifies KI of the edge crack while KII might be either amplified or attenuated depending on the crack configuration. Furthermore, the present results indicate that, for the purpose of Fitness-for-Service, the effective SIF at the tip of the slanted crack always increases due to the presence of the horizontal crack.

References

1.
Okamura
,
Y.
,
Sakashita
,
A.
,
Fukuda
,
T.
,
Yamashita
,
H.
, and
Futami
,
T.
,
2003
, “
Latest SCC Issues of Core Shroud and Recirculation Piping in Japanese BWRs
,”
17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17)
,
Prague, Czech Republic
, Aug. 17–22, Paper No. WG01-1.
2.
Kamaya
,
M.
, and
Haruna
,
T.
,
2006
, “
Crack Initiation Model for Type 304 Stainless Steel in High Temperature Water
,”
Corros. Sci.
,
48
(
9
), pp.
2442
2456
.10.1016/j.corsci.2005.09.015
3.
Cipolla
,
R. C.
,
2023
, “
Section XI Flaw Acceptance Criteria and Evaluation Using Code Procedures
,”
Companion Guide to the ASME Boiler & Pressure Vessel Codes
, 6th ed., Vol.
2
,
ASME Press, New York
.10.1115/1.886526_ch30
4.
British Standards
,
2019
,
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
The British Standards Institution, BSI Standards Limited
,
London, UK
.
5.
Gutierrez-Solana
,
F.
, and
Cicero
,
S.
,
2009
, “
FITNET FFS Procedure: A Unified European Procedure for Structural Integrity Assessment
,”
Eng. Fail. Anal.
,
16
(
2
), pp.
559
577
.10.1016/j.engfailanal.2008.02.007
6.
American Petroleum Institute
,
2021
,
Fitness-for-Service
,
American Petroleum Institute
,
Washington, DC
.
7.
Japan Society of Mechanical Engineers
,
2008
,
“Rules on Fitness-for-Service” for Nuclear Power Plant
,
Japan Society of Mechanical Engineers
,
Tokyo, Japan
.
8.
Kamaya
,
M.
,
2008
, “
Growth Evaluation of Multiple Interacting Surface Cracks. Part I: Experiments and Simulation of Coalesced Crack
,”
Eng. Fract. Mech.
,
75
(
6
), pp.
1350
1366
.10.1016/j.engfracmech.2007.07.014
9.
Hasegawa
,
K.
,
Saito
,
K.
, and
Miyazaki
,
M.
,
2009
, “
Alignment Rule for Non-Aligned Flaws for Fitness- for- Service Evaluations Based on LEFM
,”
ASME J. Pressure Vessel Technol.
,
131
(
4
), p.
041403
.10.1115/1.3152229
10.
Hasegawa
,
K.
,
Miyazaki
,
K.
, and
Saito
,
K.
,
2010
, “
Behavior of Plastic Collapse Moments for Pipes With Two Non-Aligned Flaws
,”
ASME
Paper No. PVP2010-25199.10.1115/PVP2010-25199
11.
Hasegawa
,
K.
,
Miyazaki
,
K.
, and
Saito
,
K.
,
2011
, “
Plastic Collapse Loads for Flat Plates With Dissimilar Non-Aligned Through-Wall Cracks
,”
ASME
Paper No. PVP2011-57841.10.1115/PVP2011-57841
12.
Miyazaki
,
K.
,
Hasegawa
,
K.
, and
Saito
,
K.
,
2011
, “
Effect of Flaw Dimensions on Ductile Fracture Behavior of Non-Aligned Multiple Flaws in a Plate
,”
ASME
Paper No. PVP2011-57559.10.1115/PVP2011-57559
13.
Suga
,
K.
,
Miyazaki
,
K.
,
Kawasaki
,
S.
, and
Arai
,
Y.
,
2011
, “
Study on the Interaction of Multiple Flaws in Ductile Fracture Process
,”
ASME
Paper No. PVP2011-57188.10.1115/PVP2011-57188
14.
Suga
,
K.
,
Miyazaki
,
K.
,
Senda
,
R.
, and
Kikuchi
,
M.
,
2011
, “
Ductile Fracture Simulation of Multiple Surface Flaws
,”
ASME
Paper No. PVP2011-57147.10.1115/PVP2011-57147
15.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
,
2013
, “
A LEFM Based Study on the Interaction Between an Edge and a Horizontal Parallel Crack
,”
ASME
Paper No. PVP2013-97083.10.1115/PVP2013-97083
16.
Ma
,
Q.
,
Perl
,
M.
, and
Levy
,
C.
,
2019
, “
Stress Intensity Factors for an Edge Crack Interacting With an Embedded Parallel Crack for a Finite Plate Under Pure Bending
,”
ASME
Paper No. PVP2019-93248.10.1115/PVP2019-93248
17.
Levy
,
C.
,
Ma
,
Q.
, and
Perl
,
M.
,
2020
, “
The Influence of a Non-Aligned Semi-Elliptical Horizontal Crack on the Stress Intensity Factor Distribution Along the Front of a Quarter-Circle Corner Crack in a Semi-Infinite Plate Under Pure Bending
,”
ASME
Paper No. IMECE2020-23285.10.1115/IMECE2020-23285
18.
Perl
,
M.
,
Levy
,
C.
, and
Ma
,
Q.
, “
A Mixed-Mode Analysis of Two Parallel Non-Aligned Cracks in a Large Flat Plate Subjected to Remote Tension
,”
ASME
Paper No. IMECE2021-71978.10.1115/IMECE2021-71978
19.
Fayed
,
A. S.
,
2017
, “
Numerical Analysis of Mixed Mode I/II Stress Intensity Factors of Edge Slanted Cracked Plates
,”
Eng. Solid Mech.
,
5
(
1
), pp.
61
70
.10.5267/j.esm.2016.8.001
20.
Shi
,
L.
, and
Oyadiji
,
S. O.
,
2023
, “
Numerical Analysis of Mixed Mode (I/II) Stress Intensity Factors Of Single Edge Cracked/Notched Plates Under Different Boundary Conditions Using Strain Energy Approach
,”
Fatigue Fract. Eng. Mater. Struct.
, 46(6), pp. 2229–2243.10.1111/ffe.13994
21.
Theocaris
,
P. S.
, and
Michopoulos
,
J. G.
,
1983
, “
A Closed-Form Solution of a Slanted Crack Under Biaxial Loading
,”
Eng. Fract. Mech.
,
17
(
2
), pp.
97
123
.10.1016/0013-7944(83)90163-7
22.
Albinmousa
,
J.
,
Merah
,
N.
, and
Khan
,
S. M. A.
,
2011
, “
A Model For Calculating Geometrical Factors For A Mixed-Mode I-II Single Edge Notched Tension Specimen
,”
Eng. Fract. Mech.
,
78
(
18
), pp.
3300
3307
.10.1016/j.engfracmech.2011.09.005
23.
Matsumto
,
T.
,
Tanaka
,
M.
, and
Obara
,
R.
,
2000
, “
Computation of Stress Intensity Factors Of Interface Cracks Based On Interaction Energy Release Rates And BEM Sensitivity Analysis
,”
Eng. Fract. Mech.
,
65
(
6
), pp.
683
702
.10.1016/S0013-7944(00)00005-9
24.
Kuang
,
J. H.
, and
Chen
,
L. S.
,
1993
, “
A Displacement Extrapolation Method For Two Dimensional Mixed Mode Crack Problems
,”
Eng. Fract. Mech.
,
46
(
5
), pp.
735
741
.10.1016/0013-7944(93)90123-A
25.
Ismail
,
A. E.
,
Tobi
,
A. L. M.
, and
Nor
,
N. H. M.
,
2015
, “
Stress Intensity Factors Of Slanted Cracks In Round Bars Subjected To Mode I Tension Loading
,”
AIP Conf. Proc.
,
1660
(
1
), p.
070027
.10.1063/1.4915745
26.
Swanson Analysis System, Inc.
,
2009
,
ANSYS 12 User Manual
,
Swanson Analysis System, SAS IP Inc
.,
Canonsburg, PA
.
27.
Barsoum
,
R. S.
,
1976
, “
On the Use of Isoparametric Finite Element in Linear Fracture Mechanics
,”
Int. J. Numer. Methods Eng.
,
10
(
1
), pp.
25
37
.10.1002/nme.1620100103
28.
Levy
,
C.
,
Perl
,
M.
, and
Ma
,
Q.
,
2024
, “
Mode I and Mode II Stress Intensity Factors For A Slanted-Edge-Crack Affected by an Adjacent Horizontal Crack Under Remote Tension
,”
ASME
Paper No. PVP2024-122218.10.1115/PVP2024-122218
29.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
ASME
,
New York
.
30.
Rooke
,
D. P.
, and
Cartwright
,
D. J.
,
1976
,
Compendium of Stress Intensity Factors
,
Her Majesty's Stationary Office
,
London, UK
.
31.
Ritchie
,
R. O.
,
1988
, “
Mechanisms of Fatigue Crack Propagation In Metals, Ceramics And Composites: Role Of Crack Tip Shielding
,”
Mater. Sci. Eng.: A
,
103
(
1
), pp.
15
28
.10.1016/0025-5416(88)90547-2
You do not currently have access to this content.