Abstract

Friction stir welding (FSW) is one of the leading joining processes used for aluminum and its alloys. This most recent joining process joins materials below the melting point which make it ahead of any other joining process. This joining technique is efficient, energy economical, environment gracious, and adaptable. It is a modern solid-state joining technique and has been employed in aerospace, rail, automotive, and marine industries. The FSW process parameters play a major role in deciding the weld quality. In this research work, tool rotational speed, tool hardness, shoulder to pin diameter ratio, and welding speed/feed were selected as the parameters to see how we can increase the quality of the weld by varying these parameters. Highlights of this research work are: (a) efficient tool design regarding material selection for the tool and design of the tool (D/d ratio), (b) effects of FSW parameters mostly tool rotational speed on mechanical properties related to quality and strength of the weld, and (c) effect of tool hardness and welding speed on strength of friction stir welding. Design of experiment software was used to design experiments and tool geometry. Another technique that was used in this research was related to regression analysis to forecast the tensile strength and hardness of friction stir-welded joint. The tensile strength and hardness of welding joints were predicted by taking the parameters like tool rotation speed, weld speed, tool hardness, and D/d ratio as a task. From the investigation of influence of the parameters, it was concluded that welding speed is the most significant parameter, while rotational speed, tool hardness, and D/d ratio are least significant parameters; however, these parameters still affect the quality of weld. The highest tensile strength of 447.16 and hardness of 138.5 HB have been achieved at a rotational speed of 1200 rpm, welding speed of 60 mm/min, D/d ratio of 3.11, and tool hardness of 50 HRC with simple cylindrical tool pin profile. An evaluation was made between measured and predicted results by developing a regression model, and the values obtained for the response tensile strengths and hardness were compared with measured values. The accuracy of the experimental results can be demonstrated by plotting the graphs of regressions' projected values against the experimental data. Scanning electron micrography (SEM) analysis was done on the low, medium, and high values samples to visualize the grain structure by fractography. Three confirmation tests were carried out in order to validate the regression models.

References

1.
Magalhães
,
V. M.
,
Leitão
,
C.
, and
Rodrigues
,
D. M.
,
2018
, “
Friction Stir Welding Industrialisation and Research Status
,”
Sci. Technol. Weld. Joining
,
23
(
5
), pp.
400
409
.10.1080/13621718.2017.1403110
2.
Mofeed Alam
,
M.
,
Jha
,
A. K.
,
Mukherjee
,
S.
,
Panda
,
S.
, and
Chakraborty
,
S. S.
,
2021
, “
A Review on Friction Stir Welding—A Green Manufacturing Technology
,”
Recent Trends in Manufacturing and Materials Towards Industry 4.0: Selected Articles From iM3F 2020
,
Springer
, Kuala Lumpur,
Malaysia
.
3.
Yang
,
M.
,
Bao
,
R.-J.
,
Liu
,
X.-Z.
, and
Song
,
C.-Q.
,
2019
, “
Thermo-Mechanical Interaction Between Aluminum Alloy and Tools With Different Profiles During Friction Stir Welding
,”
Trans. Nonferrous Met. Soc. China
,
29
(
3
), pp.
495
506
.10.1016/S1003-6326(19)64958-7
4.
Kumar
,
K.
,
Kailas
,
S. V.
, and
Srivatsan
,
T. S.
,
2008
, “
Influence of Tool Geometry in Friction Stir Welding
,”
Mater. Manuf. Processes
,
23
(
2
), pp.
188
194
.10.1080/10426910701774734
5.
Rajakumar
,
S.
, and
Balasubramanian
,
V.
,
2012
, “
Establishing Relationships Between Mechanical Properties of Aluminium Alloys and Optimised Friction Stir Welding Process Parameters
,”
Mater. Des.
,
40
, pp.
17
35
.10.1016/j.matdes.2012.02.054
6.
Ni
,
Y.
,
Liu
,
Y.
,
Zhang
,
P.
,
Huang
,
J.
, and
Yu
,
X.
,
2022
, “
Thermal Cycles, Microstructures and Mechanical Properties of AA7075-T6 Ultrathin Sheet Joints Produced by High Speed Friction Stir Welding
,”
Mater. Charact.
,
187
, p.
111873
.10.1016/j.matchar.2022.111873
7.
Dehghani
,
K.
,
Ghorbani
,
R.
, and
Soltanipoor
,
A. R.
,
2015
, “
Microstructural Evolution and Mechanical Properties During the Friction Stir Welding of 7075-O Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9–12
), pp.
1671
1679
.10.1007/s00170-014-6574-0
8.
Mehri
,
A.
,
Abdollah-Zadeh
,
A.
,
Habibi
,
N.
,
Hajian
,
M.
, and
Wang
,
J. T.
,
2020
, “
The Effects of Rotational Speed on Microstructure and Mechanical Properties of Friction Stir-Welded 7075-T6 Thin Sheet
,”
J. Mater. Eng. Perform.
,
29
(
4
), pp.
2316
2323
.10.1007/s11665-020-04733-w
9.
El-Nasr
,
A.-B. A. A.
,
2010
, “
Mechanical Properties and Fracture Behavior of Friction Stir Welded 7075-T6 Al Alloy
,”
J. Eng. Comput. Sci.
,
3
(
2
), pp.
147
–1
61
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9af6feddb5efc695800a2e0731a8bc83bb6a8077
10.
Goyal
,
A.
, and
Garg
,
R. K.
,
2019
, “
Establishing Mathematical Relationships to Study Tensile Behavior of Friction Stir Welded AA5086-H32 Aluminium Alloy Joints
,”
Silicon
,
11
(
1
), pp.
51
65
.10.1007/s12633-018-9858-4
11.
Jayaseelan
,
P.
,
Christy
,
T. V.
,
Vijay
,
S. J.
, and
Nelson
,
R.
,
2019
, “
Effect of Tool Material, Profile and D/d Ratio in Friction Stir Welding of Aluminium Metal Matrix Composites
,”
Mater. Res. Express
,
6
(
9
), p.
096590
.10.1088/2053-1591/ab30b1
12.
Kesharwani
,
R.
,
Jha
,
K. K.
,
Imam
,
M.
,
Sarkar
,
C.
, and
Barsoum
,
I.
,
2024
, “
Correlation of Microstructure, Texture, and Mechanical Properties of Friction Stir Welded Joints of AA7075-T6 Plates Using a Flat Tool Pin Profile
,”
Heliyon
,
10
(
3
), p.
e25449
.10.1016/j.heliyon.2024.e25449
13.
Hsu
,
Q.-C.
, and
Do
,
A. T.
,
2015
, “
Formation Ability Welding Seams and Mechanical Properties of High Strength Alloy AA7075 When Extrusion Hollow Square Tube
,”
Int. J. Precis. Eng. Manuf.
,
16
(
3
), pp.
557
566
.10.1007/s12541-015-0075-4
14.
Rajakumar
,
S.
,
Muralidharan
,
C.
, and
Balasubramanian
,
V.
,
2011
, “
Influence of Friction Stir Welding Process and Tool Parameters on Strength Properties of AA7075-T6 Aluminium Alloy Joints
,”
Mater. Des.
,
32
(
2
), pp.
535
549
.10.1016/j.matdes.2010.08.025
15.
Purohit
,
R.
,
Rana
,
R. S.
,
Dwivedi
,
R. K.
,
Banoriya
,
D.
, and
Singh
,
S. K.
,
2015
, “
Optimization of Electric Discharge Machining of M2 Tool Steel Using Grey Relational Analysis
,”
Mater. Today Proc.
,
2
(
4–5
), pp.
3378
3387
.10.1016/j.matpr.2015.07.312
16.
Rao
,
M. S.
,
Kumar
,
B. R.
, and
Hussain
,
M. M.
,
2017
, “
Experimental Study on the Effect of Welding Parameters and Tool Pin Profiles on the IS:65032 Aluminum Alloy FSW Joints
,”
Mater. Today Proc.
,
4
(
2
), pp.
1394
1404
.
17.
Choudhary
,
A. K.
, and
Jain
,
R.
,
2021
, “
Fundamentals of Friction Stir Welding, Its Application, and Advancements
,” J. P. Davim, ed.,
Welding Technology
, Materials Forming, Machining and Tribology, Springer, Cham, pp.
41
90
.10.1007/978-3-030-63986-0_2
18.
Abd Elnabi
,
M. M.
,
El Mokadem
,
A.
, and
Osman
,
T.
,
2022
, “
Optimization of Process Parameters for Friction Stir Welding of Dissimilar Aluminum Alloys Using Different Taguchi Arrays
,”
Int. J. Adv. Manuf. Technol.
,
121
(
5–6
), pp.
3935
3964
.10.1007/s00170-022-09531-3
19.
Sasikala
,
G.
,
Jothiprakash
,
V. M.
,
Pant
,
B.
,
Subalakshmi
,
R.
,
Thirumal Azhagan
,
M.
,
Arul
,
K.
,
Alonazi
,
W. B.
,
Karnan
,
M.
, and
Praveen Kumar
,
S.
,
2022
, “
Optimization of Process Parameters for Friction Stir Welding of Different Aluminum Alloys AA2618 to AA5086 by Taguchi Method
,”
Adv. Mater. Sci. Eng.
,
2022
, pp.
1
9
.10.1155/2022/3808605
20.
Ali
,
H.
,
Ahmad
,
Z.
,
Jawad
,
M.
, and
Hanif
,
M. W.
,
2024
, “
Evaluation of the Process Parameters and Cladding Effects on the Microstructure and Mechanical Properties of SA516 GR70 Steel Welded Joints
,”
Tech. J.
,
29
(
3
), pp.
52
64
.https://www.researchgate.net/publication/384765954_Evaluation_of_the_Process_Parameters_on_the_Microstructure_and_Mechanical_Properties_of_Cladded_SA516_GR70_Steel_Welded_Joints
21.
Sahoo
,
A.
,
Rout
,
A.
, and
Das
,
D.
,
2015
, “
Response Surface and Artificial Neural Network Prediction Model and Optimization for Surface Roughness in Machining
,”
Int. J. Ind. Eng. Comput.
,
6
(
2
), pp.
229
240
.10.5267/j.ijiec.2014.11.001
22.
Santhosh
,
A. J.
,
Tura
,
A. D.
,
Jiregna
,
I. T.
,
Gemechu
,
W. F.
,
Ashok
,
N.
, and
Ponnusamy
,
M.
,
2021
, “
Optimization of CNC Turning Parameters Using Face Centred CCD Approach in RSM and ANN-Genetic Algorithm for AISI 4340 Alloy Steel
,”
Results Eng.
,
11
, p.
100251
.10.1016/j.rineng.2021.100251
23.
Karthikeyan
,
R.
, and
Balasubramanian
,
V.
,
2010
, “
Predictions of the Optimized Friction Stir Spot Welding Process Parameters for Joining AA2024 Aluminum Alloy Using RSM
,”
Int. J. Adv. Manuf. Technol.
,
51
(
1–4
), pp.
173
183
.10.1007/s00170-010-2618-2
24.
Salloomi
,
K. N.
,
2019
, “
Fully Coupled Thermomechanical Simulation of Friction Stir Welding of Aluminum 6061-T6 Alloy T-Joint
,”
J. Manuf. Processes
,
45
, pp.
746
754
.10.1016/j.jmapro.2019.06.030
25.
Zhang
,
Z.
,
Xiao
,
B.
, and
Ma
,
Z.
,
2014
, “
Hardness Recovery Mechanism in the Heat-Affected Zone During Long-Term Natural Aging and Its Influence on the Mechanical Properties and Fracture Behavior of Friction Stir Welded 2024Al–T351 Joints
,”
Acta Mater.
,
73
, pp.
227
239
.10.1016/j.actamat.2014.04.021
26.
Hemmati
,
I.
,
Rao
,
J. C.
,
Ocelík
,
V.
, and
De Hosson
,
J.
,
2013
, “
Electron Microscopy Characterization of Ni-Cr-B-Si-C Laser Deposited Coatings
,”
Microsc. Microanal.
,
19
(
1
), pp.
120
131
.10.1017/S1431927612013839
27.
Garg
,
A.
,
Raturi
,
M.
, and
Bhattacharya
,
A.
,
2020
, “
Strength, Failure and Microstructure Development for Friction Stir Welded AA6061-T6 Joints With Different Tool Pin Profiles
,”
CIRP J. Manuf. Sci. Technol.
,
29
, pp.
99
114
.10.1016/j.cirpj.2020.03.001
28.
Choi
,
K.-H.
,
Cho
,
J.-R.
, and
Shim
,
D.-S.
,
2024
, “
Effect of Heat Transfer in Substrate on Microstructure and Tensile Behavior of Deposits Built by Directed Energy Deposition
,”
J. Mater. Res. Technol.
,
28
, pp.
3911
3931
.10.1016/j.jmrt.2023.12.234
29.
Sultana
,
N.
,
Hossain
,
S. M. Z.
,
Mohammed
,
M. E.
,
Irfan
,
M. F.
,
Haq
,
B.
,
Faruque
,
M. O.
,
Razzak
,
S. A.
, and
Hossain
,
M. M.
,
2020
, “
Experimental Study and Parameters Optimization of Microalgae Based Heavy Metals Removal Process Using a Hybrid Response Surface Methodology-Crow Search Algorithm
,”
Sci. Rep.
,
10
(
1
), p.
15068
.10.1038/s41598-020-72236-8
You do not currently have access to this content.