Abstract

One of the most common types of fluid storage tanks are rectangular concrete tanks placed on the ground. Ensuring the seismic performance of these tanks is crucial as, besides damage and losses during a crisis, they can lead to other crises such as fires or toxic material leaks. One pivotal factor influencing the seismic behavior of these tanks is the height of the freeboard. A comprehensive understanding of how freeboard height impacts the impulsive and convective masses is essential for the effective design and dynamic analysis of rectangular tanks. While numerous numerical and experimental studies have explored this field, the influence of various filling levels, fluid properties, and tank geometries under seismic loading conditions requires further investigation. In this study, an experimental model placed on a shaking table and a numerical model developed in ansys software were subjected to various earthquake records. The effects under seismic loading were assessed across different fill levels, tank geometries, and freeboard heights. In contrast to previous studies, the new results revealed a nonlinear relationship between freeboard height and variations in impulsive and convective masses. Finally, the proposed machine learning model accurately developed this nonlinear relationship, which can be utilized to improve current design practices for rectangular tanks in seismic-prone areas.

References

1.
Malhotra
,
P. K.
,
Wenk
,
T.
, and
Wieland
,
M.
,
2000
, “
Simple Procedure for Seismic Analysis of Liquid-Storage Tanks
,”
Struct. Eng. Int.
,
10
(
3
), pp.
197
201
.10.2749/101686600780481509
2.
Panigrahy
,
P. K.
,
Saha
,
U. K.
, and
Maity
,
D.
,
2009
, “
Experimental Studies on Sloshing Behavior Due to Horizontal Movement of Liquids in Baffled Tanks
,”
Ocean Eng.
,
36
(
3–4
), pp.
213
222
.10.1016/j.oceaneng.2008.11.002
3.
Goudarzi
,
M. A.
,
Sabbagh-Yazdi
,
S. R.
, and
Marx
,
W.
,
2010
, “
Seismic Analysis of Hydrodynamic Sloshing Force on Storage Tank Roofs
,”
Earthquake Spectra
,
26
(
1
), pp.
131
152
.10.1193/1.3283902
4.
Abatt
,
F. G.
,
2011
, “
Benchmark Analysis of Seismically Induced Fluid-Structure Interaction in Liquid-Containing Tanks With Insufficient Freeboard
,”
Structures Congress 2011
, Las Vegas, NV, Apr. 14–16, pp.
2153
2165
.10.1061/41171(401)187
5.
Amiri
,
M.
, and
Sabbagh-Yazdi
,
S. R.
,
2012
, “
Influence of Roof on Dynamic Characteristics of Dome Roof Tanks Partially Filled With Liquid
,”
Thin-Walled Struct.
,
50
(
1
), pp.
56
67
.10.1016/j.tws.2011.08.010
6.
Goudarzi
,
M. A.
, and
Sabbagh-Yazdi
,
S. R.
,
2012
, “
Investigation of Nonlinear Sloshing Effects in Seismically Excited Tanks
,”
Soil Dyn. Earthquake Eng.
,
43
, pp.
355
365
.10.1016/j.soildyn.2012.08.001
7.
Nayak
,
S. K.
, and
Biswal
,
K. C.
,
2015
, “
Fluid Damping in Rectangular Tank Fitted With Various Internal Objects–An Experimental Investigation
,”
Ocean Eng.
,
108
, pp.
552
562
.10.1016/j.oceaneng.2015.08.042
8.
Radnić
,
J.
,
Grgić
,
N.
,
Kusić
,
M. S.
, and
Harapin
,
A.
,
2018
, “
Shake Table Testing of an Open Rectangular Water Tank With Water Sloshing
,”
J. Fluids Struct.
,
81
, pp.
97
115
.10.1016/j.jfluidstructs.2018.04.020
9.
Bae
,
D.
, and
Park
,
J. H.
,
2018
, “
Shaking Table Test of Steel Cylindrical Liquid Storage Tank Considering the Roof Characteristics
,”
Int. J. Steel Struct.
,
18
(
4
), pp.
1167
1176
.10.1007/s13296-018-0093-z
10.
Compagnoni
,
M. E.
, and
Curadelli
,
O.
,
2018
, “
Experimental and Numerical Study of the Response of Cylindrical Steel Tanks Under Seismic Excitation
,”
Int. J. Civ. Eng.
,
16
(
7
), pp.
793
805
.10.1007/s40999-017-0218-3
11.
Kabiri
,
M. M.
,
Nikoomanesh
,
M. R.
,
Danesh
,
P. N.
, and
Goudarzi
,
M. A.
,
2019
, “
Numerical and Experimental Evaluation of Sloshing Wave Force Caused by Dynamic Loads in Liquid Tanks
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111112
.10.1115/1.4043855
12.
Qin
,
H.
,
Hua
,
Y.
, and
Wang
,
Z.
,
2019
, “
Numerical and Experimental Study on Large Amplitude Sloshing Liquid Impact on Tank Roof
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
242
(
2
), p.
022066
.10.1088/1755-1315/242/2/022066
13.
Goudarzi
,
M. A.
,
Moosapoor
,
M.
, and
Nikoomanesh
,
M. R.
,
2020
, “
Seismic Design Loads of Cylindrical Liquid Tanks With Insufficient Freeboard
,”
Earthquake Spectra
,
36
(
4
), pp.
1844
1863
.10.1177/8755293020926191
14.
Caprinozzi
,
S.
,
Paolacci
,
F.
,
Bursi
,
O. S.
, and
Dolšek
,
M.
,
2021
, “
Seismic Performance of a Floating Roof in an Unanchored Broad Storage Tank: Experimental Tests and Numerical Simulations
,”
J. Fluids Struct.
,
105
, p.
103341
.10.1016/j.jfluidstructs.2021.103341
15.
Rouzbahani
,
A.
,
Amirsradari
,
S.
, and
Goudarzi
,
M.
,
2024
, “
Experimental Study of Using an Innovative Porous Floating Roof for Suppression of Sloshing Effects in Cylindrical Storage Tanks
,”
Ocean Eng.
,
310
, p.
118735
.10.1016/j.oceaneng.2024.118735
16.
Malhotra
,
P. K.
,
2005
, “
Sloshing Loads in Liquid-Storage Tanks With Insufficient Freeboard
,”
Earthquake Spectra
,
21
(
4
), pp.
1185
1192
.10.1193/1.2085188
17.
Khosravi
,
S.
, and
Goudarzi
,
M. A.
,
2023
, “
Seismic Risk Assessment of on-Ground Concrete Cylindrical Water Tanks
,”
Innovative Infrastruct. Solutions
,
8
(
1
), p.
68
.10.1007/s41062-022-01002-8
18.
ANSYS Inc., 2024, “ANSYS Software Documentation,” ANSYS Inc., Canonsburg, PA, accessed Nov. 8, 2024
, https://www.ansys.com/resource-library/manuals
19.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
, 2013,
An Introduction to Statistical Learning
, Vol. 112,
Springer
,
New York
, p.
18
.
You do not currently have access to this content.