Graphical Abstract Figure

Emulation of residual stress field induced in thermal autofrettage of cylinder using quivalent temperature field.

Graphical Abstract Figure

Emulation of residual stress field induced in thermal autofrettage of cylinder using quivalent temperature field.

Close modal

Abstract

The equivalent temperature field of residual stresses induced by autofrettage of thick-walled cylinders and spheres have been successfully implemented in a finite element method framework to study the crack growth in autofrettaged components. Thermal autofrettage is a potential alternative method for strengthening hollow cylinders against internal pressurization. The assessment of service life of thermally autofrettaged cylinders containing cracks is imperative when they are subjected to high pressure static or cyclic in-service loading. There the equivalent temperature field replicating the thermal autofrettage-induced residual stresses will serve as the input to the finite element method analysis to evaluate the important fracture parameters such as static fracture endurance and the rate of crack growth for predicting service life. This work presents evaluation of an equivalent temperature field by establishing an equivalence between the thermoelastic stress field and thermal autofrettage-induced residual stress field in a cylinder obtained from either an analytical or a numerical model. The evaluated equivalent temperature field is then used in a finite element method analysis to exemplify the replication of the original residual stresses generated by thermal autofrettage in SS304, aluminum cylinders and electroslag refined (ESR) steel gun barrel. It is found that the finite element stress solution due to the application of equivalent temperature field and the original analytical or numerical thermal autofrettage residual stress solution are in good agreement with less than 5% deviation in the case of SS304 and aluminum cylinders, and that in ESR steel barrel with less than 1% deviation.

References

1.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open-End Tubes—Pressures, Stresses, Strains, and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.10.1115/1.1359209
2.
Hu
,
Z.
, and
Parker
,
A. P.
,
2019
, “
Swage Autofrettage Analysis—Current Status and Future Prospects
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
233
241
.10.1016/j.ijpvp.2019.03.007
3.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050802
.10.1115/1.4039206
4.
Levy
,
C.
,
Perl
,
M.
, and
Ma
,
Q.
,
2003
, “
The Influence of Finite Three-Dimensional Multiple Axial Erosions on the Fatigue Life of Partially Autofrettaged Pressurized Cylinders
,”
ASME J. Pressure Vessel Technol.
,
125
(
4
), pp.
379
384
.10.1115/1.1616582
5.
Li
,
Y.
,
Wang
,
W.
,
Pan
,
M.
,
Cao
,
W.
,
Ma
,
X.
, and
Li
,
Y.
,
2023
, “
Fatigue Life Analysis of High-Pressure Seamless Steel Cylinder for Hydrogen Using Autofrettage Design
,”
Int. J. Pressure Vessels Piping
,
206
, p.
105065
.10.1016/j.ijpvp.2023.105065
6.
Jacob
,
L.
,
1907
, “
La Résistance et L'équilibre Elastique Des Tubes Frettés
,” Mém. Artillerie
Nav.
,
1
(
5
), pp.
43
155
(in French).
7.
Shim
,
W. S.
,
Kim
,
J. H.
,
Lee
,
Y. S.
,
Cha
,
K. U.
, and
Hong
,
S. K.
,
2010
, “
Hydraulic Autofrettage of Thick-Walled Cylinders Incorporating Bauschinger Effect
,”
Exp. Mech.
,
50
(
5
), pp.
621
626
.10.1007/s11340-009-9255-4
8.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.10.1007/BF02325691
9.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.10.1115/1.4030025
10.
Kamal
,
S. M.
,
Borsaikia
,
A. C.
, and
Dixit
,
U. S.
,
2015
, “
Experimental Assessment of Residual Stresses Induced by the Thermal Autofrettage of Thick-Walled Cylinders
,”
J. Strain Anal. Eng. Des.
,
51
(
6
), pp.
2483
2496
.10.1177/0309324715616005
11.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Comparative Study of Thermal and Hydraulic Autofrettage
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2483
2496
.10.1007/s12206-016-0508-8
12.
Kamal
,
S. M.
,
Dixit
,
U. S.
,
Roy
,
A.
,
Liu
,
Q.
, and
Silberschmidt
,
V. V.
,
2017
, “
Comparison of Plane-Stress, Generalized-Plane-Strain and 3D FEM Elastic-Plastic Analyses of Thick-Walled Cylinders Subjected to Radial Thermal Gradient
,”
Int. J. Mech. Sci.
,
131–132
, pp.
744
752
.10.1016/j.ijmecsci.2017.07.034
13.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
An Analysis of Thermal Autofrettage Process With Heat Treatment
,”
Int. J. Mech. Sci.
,
144
, pp.
134
145
.10.1016/j.ijmecsci.2018.05.053
14.
Shufen
,
R.
,
Mahanta
,
N.
, and
Dixit
,
U. S.
,
2019
, “
Development of a Thermal Autofrettage Setup to Generate Compressive Residual Stresses on the Surfaces of a Cylinder
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051403
.10.1115/1.4044119
15.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.10.1016/j.matdes.2016.05.062
16.
Kamal
,
S. M.
,
2018
, “
Analysis of Residual Stress in the Rotational Autofrettage of Thick-Walled Disks
,”
ASME J. Pressure Vessel Technol.
,
140
(
6
), p.
061402
.10.1115/1.4041339
17.
Akhavanfar
,
S.
,
Darijani
,
H.
, and
Darijani
,
F.
,
2023
, “
Constitutive Modeling of High Strength Steels; Application to the Analytically Strengthening of Thick-Walled Tubes Using the Rotational Autofrettage
,”
Eng. Struct.
,
278
, p.
115516
.10.1016/j.engstruct.2022.115516
18.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2019
, “
Enhancement of Fatigue Life of Thick-Walled Cylinders Through Thermal Autofrettage Combined With Shrink-Fit
,”
Strengthening and Joining by Plastic Deformation
,
U. S.
Dixit
, and
R. G.
Narayanan
, eds.,
Springer
,
Singapore
, pp.
1
30
.
19.
Underwood
,
J. H.
,
1972
, “
Stress Intensity Factors for Internally Pressurized Thick-Walled Cylinders Part 1
,” ASTM International, West Conshohocken, PA, Standard No. ASTM STP 513.
20.
Parker
,
A. P.
, and
Farrow
,
J. R.
,
1980
, “
On the Equivalence of Axisymmetric Bending, Thermal, and Autofrettage Residual Stress Field
,”
J. Strain Anal. Eng. Des.
,
15
, pp.
51
52
.10.1243/03093247V151051
21.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
22.
Hussain
,
M. A.
,
Pu
,
S. L.
,
Vasilakis
,
J. D.
, and
O'Hara
,
P.
,
1980
, “
Simulation of Partial Autofrettage by Thermal Loads
,”
ASME J. Pressure Vessel Technol.
,
102
(
3
), pp.
314
318
.10.1115/1.3263337
23.
Pu
,
S. L.
, and
Hussain
,
M. A.
,
1981
, “
Residual Stress Redistribution Caused by Notches and Cracks in a Partially Autofrettaged Tube
,”
ASME J. Pressure Vessel Technol.
,
103
(
4
), pp.
302
306
.10.1115/1.3263406
24.
Perl
,
M.
, and
Aroné
,
R.
,
1988
, “
Stress Intensity Factors for a Radially Multicracked Partially-Autofrettaged Pressurized Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
110
(
2
), pp.
147
154
.10.1115/1.3265579
25.
Perl
,
M.
,
1988
, “
The Temperature Field for Simulating Partial Autofrettage in an Elasto-Plastic Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
110
(
1
), pp.
100
102
.10.1115/1.3265552
26.
Chen
,
P. C. T.
,
1981
, “
Numerical Prediction of Residual Stresses in an Autofrettaged Tube of Compressible Material
,” U.S. Army Armament Research and Development Command, Large Caliber Weapon Systems Laboratory, Benet Weapons Laboratory, Watervliet, NY, Technical Report No. ARLCB-TR-81019.
27.
Perl
,
M.
,
2008
, “
Thermal Simulation of an Arbitrary Residual Stress Field in a Fully or Partially Autofrettaged Thick-Walled Spherical Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
130
(
3
), p.
031201
.10.1115/1.2937762
28.
Yu
,
M. H.
,
2002
, “
Advances in Strength Theories for Materials Under Complex Stress State in the 20th Century
,”
ASME Appl. Mech. Rev.
,
55
(
3
), pp.
169
218
.10.1115/1.1472455
29.
Güven
,
U.
,
2012
, “
Generalized Equivalent Temperature Fields of Thick Walled Pressure Vessels
,”
Meccanica
,
47
(
5
), pp.
1307
1311
.10.1007/s11012-011-9514-1
30.
Perl
,
M.
,
Levy
,
C.
, and
Ma
,
Q.
,
2001
, “
The Influence of Multiple Axial Erosions on the Fatigue Life of Autofrettaged Pressurized Cylinders
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
293
297
.10.1115/1.1372325
31.
Perl
,
M.
, and
Saley
,
T.
,
2017
, “
Swage and Hydraulic Autofrettage Impact on Fracture Endurance and Fatigue Life of an Internally Cracked Smooth Gun Barrel Part I—The Effect of Overstraining
,”
Eng. Fract. Mech.
,
182
, pp.
372
385
.10.1016/j.engfracmech.2017.05.022
32.
de Swardt
,
R. R.
,
2003
, “
Finite Element Simulation of Crack Compliance Experiments to Measure Residual Stresses in Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
305
308
.10.1115/1.1593076
33.
Perl
,
M.
,
Kamal
,
S. M.
, and
Mulera
,
S.
,
2022
, “
The Use of an Equivalent Temperature Field to Emulate an Induced Residual Stress Field in a Rotating Disk Due to Full or Partial Rotational Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
144
(
6
), p.
061301
.10.1115/1.4053880
34.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
35.
ASTM,
2021
, “
Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials
,” American Society for Testing and Materials International, West Conshohocken, PA, Standard No. ASTM E21-20.
36.
ASTM
, 2014, “
Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis
,” American Society for Testing and Materials International, West Conshohocken, PA, Standard No. ASTM E831-14.
You do not currently have access to this content.