Abstract

This article first proposes a stress/strain reconstruction method based on neural networks. The construction of the dataset and the setting of the network structure are introduced around this method. Standard component strain reconstruction experiments are carried out to verify the method, and the error between the reconstructed values and the measured values is within 15%. This article further takes the tunnel boring machine (TBM) disk cutter shaft as the research object, extracts the coordinate load stress dataset of dangerous positions through finite element method, trains and tests the stress reconstruction model, and the error between the reconstruction value and the simulation value is within 10%. Finally, this article utilized a stress reconstruction model to reconstruct the stress time history of the dangerous position of the TBM rolling cutter shaft and evaluated the fatigue life of the cutter shaft based on various life criteria.

References

1.
Ko
,
W. L.
, and
Fleischer
,
V. T.
,
2011
, “
Extension of Ko Straight-Beam Displacement Theory to Deformed Shape Predictions of Slender Curved Structures
,”
3073
(
1
), pp.
1
83
.https://ntrs.nasa.gov/citations/20110011037
2.
Shenfang
,
Y.
,
Meijia
,
Y.
, and
Turban
,
Z.
,
2014
, “
A Deformation Reconstruction Method Applicable to Beam Wings
,”
J. Nanjing Univ. Aeronaut. Astronaut.
,
46
(
6
), pp.
825
830
.
3.
Foss
,
G. C.
, and
Haugse
,
E. D.
,
1995
, “
Using Modal Test Results to Develop Strain to Displacement Transformations
,”
2460
(
1
), pp.
112
118
.https://ui.adsabs.harvard.edu/abs/1995SPIE.2460..112F/abstract
4.
He
,
J.
,
Zhou
,
Y.
,
Guan
,
X.
,
Zhang
,
W.
,
Zhang
,
W.
, and
Liu
,
Y.
,
2016
, “
Time Domain Strain/Stress Reconstruction Based on Empirical Mode Decomposition: Numerical Study and Experimental Validation
,”
Sensors
,
16
(
8
), p.
1290
.10.3390/s16081290
5.
Li
,
Z.
,
Cheng
,
Y.
,
Zhang
,
L.
,
Wang
,
G.
,
Ju
,
Z.
,
Geng
,
X.
, and
Jiang
,
M.
,
2022
, “
Strain Field Reconstruction of High-Speed Train Crossbeam Based on FBG Sensing Network and Load-Strain Linear Superposition Algorithm
,”
IEEE Sens. J.
,
22
(
4
), pp.
3228
3235
.10.1109/JSEN.2021.3139648
6.
Jiang
,
X.-H.
,
Wang
,
X.-J.
,
Yuan
,
K.-H.
,
Ni
,
B.-W.
, and
Wang
,
Z.-L.
,
2020
, “
Omnidirectional Full-Field Displacement Reconstruction Method for Complex Three-Dimensional Structures
,”
AIAA J.
,
58
(
7
), pp.
3174
3186
.10.2514/1.J058775
7.
Tessler
,
A.
,
Di
,
S. M.
, and
Gherlone
,
M.
,
2010
, “
A Consistent Refinement of First-Order Shear Deformation Theory for Laminated Composite and Sandwich Plates Using Improved Zigzag Kinematics
,”
J. Mech. Mater. Struct.
,
5
(
2
), pp.
341
367
.10.2140/jomms.2010.5.341
8.
Roy
,
R.
,
Gherlone
,
M.
,
Surace
,
C.
, and
Tessler
,
A.
,
2021
, “
Full-Field Strain Reconstruction Using Uniaxial Strain Measurements: Application to Damage Detection
,”
J. Appl. Sci.
,
11
(
4
), p.
1681
.10.3390/app11041681
9.
Kefal
,
A.
, and
Oterkus
,
E.
,
2016
, “
Displacement and Stress Monitoring of a Panamax Containership Using Inverse Finite Element Method
,”
J. Ocean Eng.
,
119
, pp.
16
29
.10.1016/j.oceaneng.2016.04.025
10.
Wang
,
B.
,
Ke
,
X.
,
Du
,
K.
,
Bi
,
X.
,
Hao
,
P.
, and
Zhou
,
C.
,
2023
, “
A Novel Strain Field Reconstruction Method for Test Monitoring
,”
Int. J. Mech. Sci.
,
243
, p.
108038
.10.1016/j.ijmecsci.2022.108038
11.
Li
,
J.
,
Yu
,
Y.
, and
Qing
,
X.
,
2021
, “
Embedded FBG Sensor Based Impact Identification of CFRP Using Ensemble Learning
,”
Sensors
,
21
(
4
), p.
1452
.10.3390/s21041452
12.
Wu
,
H.
,
Dong
,
R.
,
Liu
,
Z.
,
Wang
,
H.
, and
Liang
,
L.
,
2022
, “
Deformation Monitoring and Shape Reconstruction of Flexible Planer Structures Based on FBG
,”
Micromachines
,
13
(
8
), p.
1237
.10.3390/mi13081237
13.
Huang
,
K.
,
Yan
,
J.
,
Zhang
,
L.
,
Zhang
,
F.
,
Jiang
,
M.
, and
Sui
,
Q.
,
2022
, “
Reconstruction Technology of Flexible Structure Shape Based on FBG Sensor Array and Deep Learning Algorithm
,”
Struct. Durability Health Monit.
,
16
(
2
), pp.
179
194
.10.32604/sdhm.2022.018202
14.
Lee
,
S.
,
Kim
,
K.
, and
Kim
,
N.
,
2022
, “
A Preform Design Approach for Uniform Strain Distribution in Forging Processes Based on Convolutional Neural Network
,”
ASME J. Manuf. Sci. Eng.
,
144
(
12
), p.
121004
.10.1115/1.4054904
15.
Shan
,
W. Y.
,
Li
,
X. Y.
,
Yao
,
H. Q.
, and
Lin
,
K. J.
,
2021
, “
Convolutional Neural Network-based Virtual Screening
,”
Curr. Med. Chem.
,
28
(
10
), pp.
2033
2047
.10.2174/0929867327666200526142958
16.
Zhao
,
H.
,
Ding
,
Y.
,
Li
,
A.
,
Ren
,
Z.
, and
Yang
,
K.
,
2020
, “
Live-Load Strain Evaluation of the Prestressed Concrete Box-Girder Bridge Using Deep Learning and Clustering
,”
Struct. Health Monit.
,
19
(
4
), pp.
1051
1063
.10.1177/1475921719875630
17.
Li
,
G.
,
Zhu
,
L.
,
Yang
,
J.
, et al.,
2012
, “
Computational Mechanics Modeling and Solution of TBM Hobs Based on CSM Model
,”
Min. Mach.
,
40
(
4
), pp.
8
10
.
18.
Senthilkumar
,
B.
,
Ponnambalam
,
S. G.
, and
Jawahar
,
N.
,
2008
, “
Process Factor Optimization for Controlling Pull-Down Defects in Iron Castings
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
554
560
.10.1016/j.jmatprotec.2008.02.025
19.
Sidefield,
2009
,
Preparation of Load Spectrum of Disk Hob for Full-Section Rock Boring Machine
,
Northeastern University
,
Shenyang, China
.
20.
Lee
,
Y. L.
,
Pan
,
J.
,
Hathaway
,
R. B.
, and Barkey, M. E.,
2005
,
Fatigue Testing and Analysis
,
Butterworth-Heinemann Elsevier
,
Oxford, UK
.
21.
Findley
,
W. N.
,
1959
, “
A Theory for Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending
,”
Trans. ASME
,
81
(
4
), pp.
301
305
.10.1115/1.4008327
22.
Dang-Van
,
K.
,
1993
, “
Macro-Micro Approach in High-Cycle Multiaxial Fatigue
,”
ASTM Spec. Tech. Publ.
,
1991
, pp.
20
130
.10.1520/STP24799S
23.
Wang
,
Y.
,
Sun
,
G. Q.
,
Liu
,
J. F.
,
Liu
,
X. D.
, and
Shang
,
D. G.
,
2022
, “
Multiaxial High-Cycle Fatigue Failure and Life Prediction Based on Critical Plane Method
,”
Int. J. Damage Mech.
,
31
(
8
), pp.
1165
1186
.10.1177/10567895221091308
You do not currently have access to this content.