Abstract

Tube sheet is the key pressure-bearing part in the spiral wound heat exchanger, and the high-strength and light-weight tube sheet structure is of great engineering significance for the development of a large-scale heat exchanger. In order to further realize the lightweight of the spiral-wound heat exchanger, this paper analyzes the influence of the thickness of the heat exchanger tube sheet on its strength based on the Ansys software and proposes the optimization design method of the tube sheet based on the strength safety factor F, which solves the problem that the software cannot take the stress linearization result as the state variable in the optimization calculation. The optimization results show that the thickness of the tube sheet is reduced by 40%. At this time, the stress strength at the connection between the tube sheet and the head and the center of the tube sheet first exceeds the design bearing capacity, indicating that the strength conditions of the two places are the controlling factors of the thickness. The results are important for the lightweight design of heat exchanger tube plate and material saving.

References

1.
Kong
,
L.
,
Han
,
J.
,
Chen
,
C.
,
Xing
,
K.
, and
Lei
,
G.
,
2017
, “
An Experimental Study on Subcooled Flow Boiling Heat Transfer Characteristics of R134a in Vertical Helically Coiled Tubes
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
231
239
.10.1016/j.expthermflusci.2016.11.023
2.
Wu
,
J.
,
Liu
,
S.
, and
Wang
,
M.
,
2018
, “
Process Calculation Method and Optimization of the Spiral-Wound Heat Exchanger With Bilateral Phase Change
,”
Appl. Therm. Eng.
,
134
, pp.
360
368
.10.1016/j.applthermaleng.2018.01.128
3.
Wu
,
J.
,
Wang
,
L.
, and
Liu
,
Y.
,
2018
, “
Research on Film Condensation Heat Transfer of the Shell Side of the Spiral Coil Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1349
1355
.10.1016/j.ijheatmasstransfer.2018.05.029
4.
Krisdiyanto
,
K.
,
Adi
,
R. K.
,
Sudarisman
,
S.
, and
Hamdan
,
S. B.
,
2021
, “
An Analysis of Tube Thickness Effect on Shell and Tube Heat Exchanger
,”
East.-Eur. J. Enterp. Technol.
,
1
(
8
), pp.
25
35
.10.15587/1729-4061.2021.225334
5.
Behseta
,
K.
, and
Schindler
,
S.
,
2006
, “
On the Design of the Tube Sheet and the Tube Sheet-to-Shell Junction of a Fixed Tube Sheet Heat Exchanger
,”
Int. J. Pressure Vessels Piping
,
83
(
10
), pp.
714
720
.10.1016/j.ijpvp.2006.08.002
6.
Wang
,
J.
,
Dong
,
J. S.
,
Zhai
,
X. C.
,
Fan
,
S.
, and
Ma
,
H. Y.
,
2017
, “
Strength Analysis and Optimization of Shaped Flexible Tube-Sheet Based on ANSYS
,”
Light Ind. Mach.
,
35
(
3
), pp.
87
90
.10.3969/j.issn.1005-2895.2017.03.020
7.
Sun
,
W.
,
Shi
,
X. Z.
,
Zhou
,
W.
,
Chang
,
B.
, and
Li
,
J. H.
,
2017
, “
Strength Analysis and Design of Asymmetric Tube Sheet Based on ANSYS Optimization Techniques
,”
J. Zhejiang Univ. Technol.
,
45
(
4
), pp.
366
369
.10.3969/j.issn.1006-4303.2017.04.003
8.
Ding
,
Y. Q.
,
Cheng
,
J. H.
,
Lu
,
Y.
,
Wang
,
X. Y.
,
Ye
,
B. T.
,
Xie
,
Q.
, and
Lu
,
H.
,
2021
, “
Optimization and Optimization Analysis of Tube Sheet Structure for High-Strength Light_Wight Reforming Heating Furnace
,”
Chem. Eng. Mach.
,
48
(
2
), pp.
218
223
.
9.
Zhu
,
G.-D.
,
Qian
,
C.-F.
, and
Fang
,
Z.
,
2019
, “
An Analytical Theory for the Strength Solution of Tube Sheets in Floating-Head Heat Exchangers With Back Devices
,”
Int. J. Pressure Vessels Piping
,
175
, p.
103936
.10.1016/j.ijpvp.2019.103936
10.
Liu
,
J. Y.
,
Qian
,
C. F.
, and
Li
,
H. F.
,
2015
, “
Light-Weight Design of the Tube Sheet of a High Pressure U-Tube Heat Exchanger Based on Finite Element Analysis
,”
Procedia Eng
., 130, pp.
275
285
. 10.1016/j.proeng.2015.12.221
11.
Du
,
Y. N.
,
Tang
,
X. Y.
,
Wang
,
J. H.
,
Yang
,
Z. G.
,
Ren
,
Y. F.
,
Wang
,
Z. B.
, and
Wang
,
S. J.
,
2017
, “
Effect of Mechanical Model on Limit Load Analysis of High Pressure Heater Tubesheet
,”
ASME
Paper No. PVP2017-65613.10.1115/PVP2017-65613
12.
Chikhaliya
,
K. M.
, and
Patel
,
B. P.
,
2019
, “
Optimization and Standardization of Flanged and Flued Expansion Joint Design
,”
ASME J. Pressure Vessel Technol.
,
141
(
3
), p.
034501
.10.1115/1.4043012
13.
China Standards Press
,
2014
, GB/T151-2014, Heat Exchangers[S],
China Standards Press
,
Beijing, China
.
14.
China Standards Press
,
2011
, GB 150.1∼150.3—2011, Pressure Vessels[S],
China Standards Press
,
Beijing, China
.
15.
Ladeveze
,
P.
,
2002
, “
The Exact Theory of Plate Bending
,”
J. Elasticity
,
68
(
1/3
), pp.
37
71
.10.1023/A:1026095414679
16.
X
,
W.
,
2018
,
Strength Analysis of Tube Sheet and Study on Heat Transfer Performance of Spiral Wound Corrugated Tube Heat Exchanger
,
Beijing University of Technology
,
Beijing, China
.
17.
Du
,
Y.
,
Tang
,
X.
,
Xue
,
X.
, and
Ren
,
B.
,
2018
, “
Application of Elastic-Plastic Analysis Method in High Pressure Heater Tube Sheet Design
,”
IOP Conference Series: Materials Science and Engineering
,
IOP Publishing
,
Singapore
, Vol.
439
, p.
042008
.10.1088/1757-899X/439/4/042008
18.
Chen
,
Y. B.
,
2022
,
Stress Analysis and Optimization Design of Tube Sheet of Spiral Wound Heat Exchanger
,
Zhenzhou University
,
Zhengzhou, China
.
19.
Liu
,
J.
,
Qian
,
C.
, and
Li
,
H.
,
2017
, “
Analysis of the Thermal Stress at the Tube Sheet in Floating-Head or U-Tube Heat Exchangers
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021601
.10.1115/1.4035827
20.
Ando
,
M.
,
Takasho
,
H.
,
Kawasaki
,
N.
, and
Kasahara
,
N.
,
2013
, “
Stress Mitigation Design of a Tube Sheet by Considering the Thermal Stress Inducement Mechanism
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p. 0
61207
.10.1115/1.4024618
You do not currently have access to this content.