Abstract

Influence of the tensile mean stress on fatigue life and fatigue limit was investigated for carbon steel. Uni-axial fatigue tests were conducted under stress and strain-controlled conditions at room temperature. The fatigue life and fatigue limit were reduced by applying the mean stress for the same stress amplitude. The fatigue life exhibited a better correlation with the strain range than with the stress amplitude. Increase in strain range caused by applying the mean stress correlated well with the decrease in the fatigue life. It was proposed that the mean stress effect on the fatigue life was brought about by the change in crack growth rate caused by applying the mean stress. The mean stress enhanced crack opening and accelerated the crack growth. The reduction in the fatigue limit was also brought about by the same effect. It was shown that the effective strain range considering crack closure effect gave good prediction of fatigue life and fatigue limit with and without the mean stress.

References

1.
ASME
,
2015
, “
Rules for Construction of Nuclear Facility Components – ASME Boiler and Pressure Vessel Code Section III
,”
ASME
,
New York
.
2.
Chopra
,
O. K.
, and
Shack
,
W. J.
,
2007
, “
Effect of LWR Coolant Environments on the Fatigue Life of Reactor materials - Final Report
,”
U.S. Nuclear Regulatory Commission
,
Washington, DC
, Report No.
NUREG/CR-6909, ANL-06/08
.https://www.nrc.gov/docs/ML1631/ML16319A004.pdf
3.
Nihei
,
M.
,
Heuler
,
P.
,
Boller
,
C.
, and
Seeger
,
T.
,
1986
, “
Evaluation of Mean Stress Effect on Fatigue Life by Use of Damage Parameters
,”
Int. J. Fatigue
,
8
(
3
), pp.
119
126
.10.1016/0142-1123(86)90002-2
4.
Dowling
,
N. E.
,
2009
, “
Mean Stress Effects in Strain–Life Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
32
(
12
), pp.
1004
1019
.10.1111/j.1460-2695.2009.01404.x
5.
Wehner
,
T.
, and
Fatemi
,
A.
,
1991
, “
Effects of Mean Stress on Fatigue Behaviour of a Hardened Carbon Steel
,”
Int. J. Fatigue
,
13
(
3
), pp.
241
248
.10.1016/0142-1123(91)90248-W
6.
Higuchi
,
M.
,
2008
, “
Comparison of Environmental Fatigue Evaluation Methods in LWR Water
,”
ASME
Paper No. PVP2008-61087.10.1115/PVP2008-61087
7.
De Baglion
,
L.
,
Mendez
,
J.
,
Le Duff
,
J. A.
, and
Lefrancois
,
A.
,
2012
, “
Influence of PWR Primary Water on LCF Behavior of Type 304 L Austenitic Stainless Steel at 300 Degrees C: Comparison With Results Obtained in Vacuum or in Air
,”
ASME
Paper No. PVP2012-78767.10.1115/PVP2012-78767
8.
Kamaya
,
M.
,
2017
, “
Influence of Strain Range on Fatigue Life Reduction of Stainless Steel in PWR Primary Water
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
, pp.
2194
2203
.10.1111/ffe.12650
9.
Kamaya
,
M.
,
2019
, “
Mean Stress Effect on Fatigue Properties of Type 316 Stainless Steel in PWR Primary Water Environment
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051402
.10.1115/1.4043997
10.
Murakami
,
Y.
, and
Miller
,
K. J.
,
2005
, “
What is Fatigue Damage? A View Point From the Observation of Low Cycle Fatigue Process
,”
Int. J. Fatigue
,
27
(
8
), pp.
991
1005
.10.1016/j.ijfatigue.2004.10.009
11.
Suh
,
C. M.
,
Lee
,
J. J.
, and
Kang
,
Y. G.
,
1990
, “
Fatigue Microcracks in Type 304 Stainless Steel at Elevated Temperature
,”
Fatigue Fract. Eng. Mater. Struct.
,
13
, pp.
487
496
.10.1111/j.1460-2695.1990.tb00619.x
12.
Kamaya
,
M.
, and
Kawakubo
,
M.
,
2012
, “
Strain-Based Modeling of Fatigue Crack Growth – An Experimental Approach for Stainless Steel
,”
Int. J. Fatigue
,
44
, pp.
131
140
.10.1016/j.ijfatigue.2012.05.006
13.
Kikukawa
,
M.
,
Ohji
,
K.
,
Ohkubo
,
H.
,
Yokoi
,
T.
, and
Morikawa
,
T.
,
1972
, “
Damage and Recovery From It in Low Cycle Fatigue
,”
Trans. Jpn. Soc. Mech. Eng.
,
38
(
305
), pp.
8
15
.10.1299/kikai1938.38.8
14.
Kamaya
,
M.
,
2010
, “
Fatigue Properties of 316 Stainless Steel and Its Failure Due to Internal Cracks in Low-Cycle and Extremely Low-Cycle Fatigue Regimes
,”
Int. J. Fatigue
,
32
(
7
), pp.
1081
1089
.10.1016/j.ijfatigue.2009.12.003
15.
Suh
,
C. M.
,
Yuuki
,
R.
, and
Kitagawa
,
H.
,
1985
, “
Fatigue Microcracks in a Low Carbon Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
8
, pp.
193
203
.10.1111/j.1460-2695.1985.tb01203.x
16.
Kamaya
,
M.
,
2017
, “
Fatigue Crack Tolerance Design for Stainless Steel by Crack Growth Analysis
,”
Eng. Fract. Mech.
,
177
, pp.
14
32
.10.1016/j.engfracmech.2017.03.038
17.
Newman
,
J. C.
, Jr.
, and
Phillips
,
E. P.
,
1999
, “
Fatigue-Life Prediction Methodology Using Small-Crack Theory
,”
Int. J. Fatigue
,
21
(
2
), pp.
109
119
.10.1016/S0142-1123(98)00058-9
18.
DuQuesnay
,
D. L.
,
Topper
,
T. H.
,
Yu
,
M. T.
, and
Pompetzki
,
M. A.
,
1992
, “
The Effective Stress Range as a Mean Stress Parameter
,”
Int. J. Fatigue
,
14
(
1
), pp.
45
50
.10.1016/0142-1123(92)90153-4
19.
Kamaya
,
M.
, and
Kawakubo
,
M.
,
2015
, “
Mean Stress Effect on Fatigue Strength of Stainless Steel
,”
Int. J. Fatigue
,
74
, pp.
20
29
.10.1016/j.ijfatigue.2014.12.006
20.
Kang
,
G.
,
Liu
,
Y.
, and
Li
,
Z.
,
2006
, “
Experimental Study on Ratchetting-Fatigue Interaction of SS304 Stainless Steel in Uniaxial Cyclic Stressing
,”
Mater. Sci. Eng. A
,
435–436
, pp.
396
404
.10.1016/j.msea.2006.07.006
21.
Paul
,
S. K.
,
Sivaprasad
,
S.
,
Dhar
,
S.
, and
Tarafder
,
S.
,
2010
, “
Ratcheting and Low Cycle Fatigue Behavior of SA333 Steel and Their Life Prediction
,”
J. Nucl. Mater.
,
401
(
1–3
), pp.
17
24
.10.1016/j.jnucmat.2010.03.014
22.
Yang
,
X.
,
2005
, “
Low Cycle Fatigue and Cyclic Stress Ratcheting Failure Behavior of Carbon Steel 45 Under Uniaxial Cyclic Loading
,”
Int. J. Fatigue
,
27
(
9
), pp.
1124
1132
.10.1016/j.ijfatigue.2005.01.004
23.
Facheris
,
G.
, and
Janssens
,
K. G. F.
,
2013
, “
Cyclic Mechanical Behavior of 316 L: Uniaxial LCF and Strain-Controlled Ratcheting Tests
,”
Nucl. Eng. Des.
,
257
, pp.
100
108
.10.1016/j.nucengdes.2013.01.010
24.
Goodman
,
J.
,
1989
,
Mechanics Applied to Engineering
,
Longman Green and Co
,
London, UK
.
25.
Gerber
,
W. Z.
,
1874
, “
Bestimmung Der zulässigenSpannungen in Eisen-Konstruktionen (Calculation of the Allowable Stresses in Iron Structures)
,”
Z. Bayer Archit. Ing.
,
6
, pp.
101
110
.
26.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
,
1970
, “
A Stress-Strain Function for the Fatigue of Metals
,”
J. Mater.
,
5
, pp.
767
778
.https://www.researchgate.net/publication/309476268_A_stressstrain_function_for_the_fatigue_of_metals_stressstrain_function_for_metal_fatigue_including_mean_stress_effect
27.
Walker
,
K.
,
1970
, “
The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum. In Effect of Environment and Complex Load History on Fatigue Life
,”
ASTM STP 462
, pp.
1
14
.10.1520/STP32032S
28.
Miura
,
N.
, and
Takahashi
,
Y.
,
2006
, “
High-Cycle Fatigue Behavior of Type 316 Stainless Steel at 288 °C Including Mean Stress Effect
,”
Int. J. Fatigue
,
28
(
11
), pp.
1618
1625
.10.1016/j.ijfatigue.2005.07.051
29.
Jaske
,
C. E.
, and
O'Donnell
,
W. J.
,
1977
, “
Fatigue Design Criteria for Pressure Vessel Alloys
,”
ASME J. Pressure Vessel Technol.
,
99
(
4
), pp.
584
592
.10.1115/1.3454577
30.
ASME
,
2015
, “
Inservice Inspection of Nuclear Power Plant Components – ASME Boiler and Pressure Vessel Code Section XI
,”
ASME
,
New York
.
31.
Kamaya
,
M.
,
2021
, “
Fatigue Life Prediction Model According to Crack Growth Concept (Fatigue Life Corrections for Loading History and Mean Stress Effects of S45C Carbon Steel)
,”
Trans. JSME (Japanese)
,
87
(
901
), pp.
21
00196
.10.1299/transjsme.21-00196
32.
Asada
,
S.
,
Ogawa
,
T.
,
Higuchi
,
M.
,
Kanasaki
,
H.
, and
Takada
,
Y.
,
2016
, “
Study on Mean Stress Effects for Design Fatigue Curves
,”
ASME
Paper No. PVP2016-63796.10.1115/PVP2016-63796
You do not currently have access to this content.