Abstract

Positive displacement (PD) pumps are widely employed in industrial settings due to their inherent simplicity and reliability, serving a variety of applications from slurry transport to jet washing. Although their operational principles are straightforward, the fluid dynamics of the pumped medium exhibit nontrivial characteristics, including intricate transient phenomena. Consequently, a comprehensive fluid dynamic description, such as a three-dimensional fluid analysis, presents challenges due to its demanding computational requirements. While simpler analytical PD pump models are available, they often fail to adequately represent the primary system behaviors, particularly when dealing with cavitation. Motivated by these challenges, this study aims to develop a novel one-dimensional model for PD pumps, offering a representation of essential fluid phenomena without imposing significant computational burdens. After assessing the relative importance of the fluid dynamic behaviors that the model must capture, we construct a pump model based on a one-dimensional fluid description and solve it using a second-order in time and space monotone upwind scheme for conservative law and total variation diminishing (MUSCL-TVD) scheme. The model's validity is confirmed by its application to both single-chamber and three-chamber diaphragm PD pumps, which are instrumented for experimental validation. The results of the one-dimensional model exhibit strong agreement with physical experiments, both in controlled laboratory environments and field conditions. This success suggests a promising approach for industrial applications.

References

1.
van Rijswick
,
R.
,
2017
,
Fluid Structure Interaction in Piston Diaphragm Pumps
,
Delft University of Technology
,
Delft, The Netherlands
.
2.
Iannetti
,
A.
,
Stickland
,
M. T.
, and
Dempster
,
W. M.
,
2016
, “
A CFD and Experimental Study on Cavitation in Positive Displacement Pumps: Benefits and Drawbacks of the ‘Full’ Cavitation Model
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
57
71
.10.1080/19942060.2015.1110535
3.
Iannetti
,
A.
,
Stickland
,
M. T.
, and
Dempster
,
W. M.
,
2014
, “
A Computational Fluid Dynamics Model to Evaluate the Inlet Stroke Performance of a Positive Displacement Reciprocating Plunger Pump
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
574
584
.10.1177/0957650914530295
4.
Opitz
,
K. M.
,
Engel
,
S. R.
,
Koegler
,
A. F.
,
Leipertz
,
A.
, and
Schlücker
,
E.
,
2012
, “
High‐Speed Particle Image Velocimetry Measurements of Turbulent Pipe Flows for Verification of a Fluid‐Dynamic Cavitation Model
,”
Chem. Eng. Technol.
,
35
(
11
), pp.
2035
2044
.10.1002/ceat.201200209
5.
Johnston
,
D. N.
,
1991
, “
Numerical Modelling of Reciprocating Pumps With Self-Acting Valves
,”
Proc. Inst. Mech. Eng., Part I
,
205
(
2
), pp.
87
96
.10.1243/PIME_PROC_1991_205_318_02
6.
Johnston
,
D. N.
,
Edge
,
K. A.
, and
Vaughan
,
N. D.
,
1991
, “
Experimental Investigation of Flow and Force Characteristics of Hydraulic Poppet and Disc Valves
,”
Proc. Inst. Mech. Eng., Part A
,
205
(
3
), pp.
161
171
.10.1243/PIME_PROC_1991_205_025_02
7.
Song
,
X.
,
Cui
,
L.
,
Cao
,
M.
,
Cao
,
W.
,
Park
,
Y.
, and
Dempster
,
W. M.
,
2014
, “
A CFD Analysis of the Dynamics of a Direct-Operated Safety Relief Valve Mounted on a Pressure Vessel
,”
Energy Convers. Manage.
,
81
, pp.
407
419
.10.1016/j.enconman.2014.02.021
8.
Li
,
W.
, and
Yu
,
Z.
,
2021
, “
Cavitating Flows of Organic Fluid With Thermodynamic Effect in a Diaphragm Pump for Organic Rankine Cycle Systems
,”
Energy
,
237
, p.
121495
.10.1016/j.energy.2021.121495
9.
Shin
,
Y. W.
, and
Chen
,
W. L.
,
1975
, “
Numerical Fluid-Hammer Analysis by the Method of Characteristics in Complex Piping Networks
,”
Nucl. Eng. Des.
,
33
(
3
), pp.
357
369
.10.1016/0029-5493(75)90005-9
10.
van Rijswick
,
R.
,
Talmon
,
A.
, and
van Rhee
,
C.
,
2016
, “
Fluid Structure Interaction (FSI) in Piston Diaphragm Pumps
,”
Can. J. Chem. Eng.
,
94
(
6
), pp.
1116
1126
.10.1002/cjce.22487
11.
Josifovic
,
A.
,
Stickland
,
M.
,
Iannetti
,
A.
, and
Corney
,
J.
,
2017
, “
Engineering Procedure for Positive Displacement Pump Performance Analysis Based on 1D and 3D CFD Commercial Codes
,”
ASME
Paper No. DETC2017-67758.10.1115/DETC2017-67758
12.
Price
,
S. M.
,
Smith
,
D. R.
, and
Tison
,
J. D.
,
1995
, “
The Effects of Valve Dynamics on Reciprocating Pump Reliability
,”
Proceedings of the 12th International Pump Users Symposium
, Turbomachinery Laboratories, Department of Mechanical Engineering, Texas A&M University, Houston, TX, Mar. 14–16, p.
221
.10.21423/R1T98V
13.
Shu
,
J.-J.
,
Burrows
,
C. R.
, and
Edge
,
K. A.
,
1997
, “
Pressure Pulsations in Reciprocating Pump Piping Systems Part 1: Modelling
,”
Proc. Inst. Mech. Eng., Part I
,
211
(
3
), pp.
229
235
.10.1243/0959651971539768
14.
Lee
,
J. K.
,
Jung
,
J. K.
,
Chai
,
J.-B.
, and
Lee
,
J. W.
,
2015
, “
Mathematical Modeling of Reciprocating Pump
,”
J. Mech. Sci. Technol.
,
29
(
8
), pp.
3141
3151
.10.1007/s12206-015-0713-x
15.
Edge
,
K. A.
,
Boston
,
O. P.
,
Xiao
,
K. C. S.
,
Longvill
,
K. C. M. J.
, and
Burrows
,
K. C. C. R.
,
1997
, “
Pressure Pulsations in Reciprocating Pump Piping Systems Part 2: Experimental Investigations and Model Validation
,”
Proc. Inst. Mech. Eng., Part I
,
211
(
3
), pp.
239
250
.10.1243/0959651971539777
16.
Singh
,
P. J.
, and
Madavan
,
N. K.
,
1987
, “
Complete Analysis and Simulation of Reciprocating Pumps Including System Piping
,” accessed May 28, 2024, https://api.semanticscholar.org/CorpusID:117452406
17.
Vetter
,
G.
, and
Schweinfurther
,
F.
,
1987
, “
Pressure Pulsations in the Piping of Reciprocating Pumps
,”
Chem. Eng. Technol.
,
10
(
1
), pp.
262
271
.10.1002/ceat.270100132
18.
Lohrasbi
,
A. R.
, and
Attarnejad
,
R.
,
2008
, “
Water Hammer Analysis by Characteristic Method
,”
Am. J. Eng. Appl. Sci.
,
1
(
4
), pp.
287
294
.10.3844/ajeassp.2008.287.294
19.
Sumam
,
K. S.
,
Thampi
,
S. G.
, and
Sajikumar
,
N.
,
2010
, “
An Alternate Approach for Modelling of Transient Vaporous Cavitation
,”
Int. J. Numer. Methods Fluids
,
63
(
5
), pp.
564
583
.10.1002/fld.2093
20.
Chaudhry
,
M. H.
, and
Hussaini
,
M. Y.
,
1985
, “
Second-Order Accurate Explicit Finite Difference Schemes for Waterhammer Analysis
,”
ASME J. Fluids Eng.
,
107
(
4
), pp.
523
529
.10.1115/1.3242524
21.
Bergant
,
A.
,
Tijsseling
,
A. S.
,
Vítkovský
,
J. P.
,
Covas
,
D. I. C.
,
Simpson
,
A. R.
, and
Lambert
,
M. F.
,
2008
, “
Parameters Affecting Water-Hammer Wave Attenuation, Shape and Timing—Part 1: Mathematical Tools
,”
J. Hydraul. Res.
,
46
(
3
), pp.
373
381
.10.3826/jhr.2008.2848
22.
Bergant
,
A.
,
Ross Simpson
,
A.
, and
Vìtkovský
,
J.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraul. Res.
,
39
(
3
), pp.
249
257
.10.1080/00221680109499828
23.
Milanjit
,
B.
,
Mimi
,
D. S.
, and
Das Madan
,
M.
,
2018
, “
Development of Numerical Model for Transients in Pipe Flow for Water Hammer Situation and Comparison of Different Friction Equations for Transient Friction
,”
Int. Res. J. Eng. Technol.
,
5
(
3
), pp.
2995
3001
.https://www.irjet.net/archives/V5/i3/IRJETV5I3691.pdf
24.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2004
, “
Godunov-Type Solutions for Water Hammer Flows
,”
J. Hydraul. Eng.
,
130
(
4
), pp.
341
348
.10.1061/(ASCE)0733-9429(2004)130:4(341)
25.
León
,
A. S.
,
Ghidaoui
,
M. S.
,
Schmidt
,
A. R.
, and
García
,
M. H.
,
2008
, “
Efficient Second-Order Accurate Shock-Capturing Scheme for Modeling One- and Two-Phase Water Hammer Flows
,”
J. Hydraul. Eng.
,
134
(
7
), pp.
970
983
.10.1061/(ASCE)0733-9429(2008)134:7(970)
26.
SaemI
,
S.
,
Raisee
,
M.
,
Cervantes
,
M. J.
, and
Nourbakhsh
,
A.
,
2019
, “
Computation of Two- and Three-Dimensional Water Hammer Flows
,”
J. Hydraul. Res.
,
57
(
3
), pp.
386
404
.10.1080/00221686.2018.1459892
27.
Hwang
,
Y.
, and
Chung
,
N.
,
2002
, “
A Fast Godunov Method for the Water‐Hammer Problem
,”
Int. J. Numer. Methods Fluids
,
40
(
6
), pp.
799
819
.10.1002/fld.372
28.
Zhou
,
L.
,
Wang
,
H.
,
Liu
,
D.
,
Ma
,
J.
,
Wang
,
P.
, and
Xia
,
L.
,
2017
, “
A Second-Order Finite Volume Method for Pipe Flow With Water Column Separation
,”
J. Hydro-Environ. Res.
,
17
, pp.
47
55
.10.1016/j.jher.2016.11.004
29.
Zhou
,
L.
,
Li
,
Y.
,
Karney
,
B.
,
Cheng
,
Y.
, and
Liu
,
D.
,
2021
, “
Godunov-Type Solutions for Transient Pipe Flow Implicitly Incorporating Brunone Unsteady Friction
,”
J. Hydraul. Eng.
,
147
(
7
), p.
04021021
.10.1061/(ASCE)HY.1943-7900.0001895
30.
Malalasekera
,
W.
, and
Versteeg
,
H. K.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education Ltd.
,
London, UK
.
31.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.10.1115/1.1828050
32.
van Rijswick
,
R.
,
2017
, “
Fluid Structure Interaction in Piston Diaphragm Pumps
,”
Doctoral thesis
, Delft University of Technology, Delft, The Netherlands.10.4233/uuid:2f24e261-003f-4e80-ba4e-0b0c1caecdf7
33.
LeVeque
,
R. J.
,
2002
,
Finite Volume Methods for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge, UK
.
34.
Goncalvès
,
E.
, and
Charrière
,
B.
,
2014
, “
Modelling for Isothermal Cavitation With a Four-Equation Model
,”
Int. J. Multiphase Flow
,
59
, pp.
54
72
.10.1016/j.ijmultiphaseflow.2013.10.015
35.
Guinot
,
V.
,
2008
,
Wave Propagation in Fluids: Models and Numerical Techniques
,
Wiley-ISTE
,
Hoboken, NJ
.
36.
Rizzuto
,
F.
,
Stickland
,
M.
,
Dempster
,
W.
, and
Van Rijswick
,
R.
,
2021
, “
One-Dimensional Compressible Solution for Transient Cavitating Pipe Flow
,”
J. Hydraul. Eng.
,
147
(
4
), p.
04021009
.10.1061/(ASCE)HY.1943-7900.0001855
37.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
Cambridge, UK
.
38.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.10.1016/j.jfluidstructs.2005.08.008
39.
Thiel
,
E.
,
1990
, “
Kinematik und Druckverlust selbsttätiger Ventile oszillierender Verdrängerpumpen
,” Ph.D. dissertation.
40.
Butcher
,
J. C.
,
2016
,
Numerical Methods for Ordinary Differential Equations
,
Wiley
,
Hoboken, NJ
.
41.
Zhang
,
S.
,
Iwashita
,
H.
, and
Sanada
,
K.
,
2018
, “
Thermal Performance Difference of Ideal Gas Model and Van Der Waals Gas Model in Gas-Loaded Accumulator
,”
Int. J. Hydromechatron.
,
1
(
3
), p.
293
.10.1504/IJHM.2018.094884
42.
Luo
,
J.
, and
Niu
,
Z.
,
2019
, “
Jet and Shock Wave From Collapse of Two Cavitation Bubbles
,”
Sci. Rep.
,
9
(
1
), p.
1352
.10.1038/s41598-018-37868-x
43.
Ando
,
K.
,
Sanada
,
T.
,
Inaba
,
K.
,
Damazo
,
J. S.
,
Shepherd
,
J. E.
,
Colonius
,
T.
, and
Brennen
,
C. E.
,
2011
, “
Shock Propagation Through a Bubbly Liquid in a Deformable Tube
,”
J. Fluid Mech.
,
671
, pp.
339
363
.10.1017/S0022112010005707
44.
Tackett
,
H. H.
,
Cripe
,
J. A.
, and
Dyson
,
G.
,
2008
, “
Positive Displacement Reciprocating Pump Fundamentals - Power and Direct Acting Types
,”
Proceedings of the 24th International Pump Users Symposium
, Texas A&M University. Turbomachinery Laboratories, p.
45
.10.21423/R1PX0S
You do not currently have access to this content.