Graphical Abstract Figure

Structural parameters of mixer and rectifier

Graphical Abstract Figure

Structural parameters of mixer and rectifier

Close modal

Abstract

Hydrogen gas is an environmentally friendly alternative energy source with zero emissions, making it highly valuable for replacing fossil fuels and reducing carbon emissions. One effective method of transporting hydrogen gas is by injecting it into existing natural gas pipelines. In this research, we focus on the Jingbian compressor station. This station is used for hydrogenation, blending hydrogen with the natural gas flowing through the pipelines. We propose a suitable process for hydrogen blending and design a mixing device to facilitate this process. To evaluate the mixing effect of the blended gas, we conducted numerical simulations to analyze the velocity and concentration distribution along the continuous section of the hydrogen blending pipeline. The results indicated that achieving a hydrogen branch length of 1/2 the diameter of the natural gas main pipe and a hydrogen flowrate of 10% resulted in a nonuniformity of hydrogen concentration at L = 30D of less than 0.05. Furthermore, when the hydrogen concentration was set at 3%, 10%, and 30%, the hydrogen concentration in the cross section of the pipe gradually approached the expected concentration as the mixed gas flowed. It is worth noting that during transportation of hydrogen-containing natural gas to the outlet, the velocity distribution on the cross section remained asymmetric, potentially leading to measurement errors. However, the use of a flow conditioner resulted in a further reduction in hydrogen nonuniformity and minimized velocity fluctuations, resulting in a small and uniformly distributed flow, which is advantageous for accurate measurement and transportation purposes.

References

1.
Aminudin
,
M. A.
,
Kamarudin
,
S. K.
,
Lim
,
B. H.
,
Majilan
,
E. H.
,
Masdar
,
M. S.
, and
Shaari
,
N.
,
2023
, “
An Overview: Current Progress on Hydrogen Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
48
(
11
), pp.
4371
4388
.10.1016/j.ijhydene.2022.10.156
2.
Lee
,
C.
,
Park
,
G.
, and
Kim
,
C.
,
2022
, “
Design of Type 3 High-Pressure Vessel Liner (Al 6061) for Hydrogen Vehicles
,”
ASME J. Pressure Vessel Technol.
,
144
(
6
), p.
061502
.10.1115/1.4054366
3.
Yusaf
,
T.
,
Mahamude
,
A. S. F.
,
Kadirgama
,
K.
,
Ramasamy
,
D.
,
Farhana
,
K.
,
Dhahad
,
H. A.
, and
Talib
,
A. R. A.
,
2023
, “
Sustainable Hydrogen Energy in Aviation—A Narrative Review
,”
Int. J. Hydrogen Energy
, 52, pp.
1026
1045
.10.1016/j.ijhydene.2023.02.086
4.
Li
,
G.
,
Zhang
,
X.
,
Zheng
,
Y.
,
Zhu
,
Y.
,
Guo
,
W.
, and
Tang
,
Y.
,
2023
, “
Development of a Powerful Miniature Hydrogen Catalytic Combustion Powered Thermoelectric Generator
,”
Int. J. Hydrogen Energy
,
48
(
58
), pp.
22264
22276
.10.1016/j.ijhydene.2023.03.080
5.
Xu
,
X.
,
Zhou
,
Q.
, and
Yu
,
D.
,
2022
, “
The Future of Hydrogen Energy: Bio-Hydrogen Production Technology
,”
Int. J. Hydrogen Energy
,
47
(
79
), pp.
33677
33698
.10.1016/j.ijhydene.2022.07.261
6.
Poss
,
F.
,
Galeano
,
M.
,
Baranda
,
C.
,
Franco
,
D.
,
Rincón
,
A.
,
Zambrano
,
J.
,
Cavaliero
,
C.
, and
Lópes
,
D.
,
2022
, “
Towards the Hydrogen Economy in Paraguay: Green Hydrogen Production Potential and End-Uses
,”
Int. J. Hydrogen Energy
,
47
(
70
), pp.
30027
30049
.10.1016/j.ijhydene.2022.05.217
7.
Somerday
,
B. P.
, and
Barney
,
M.
,
2015
, “
Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p.
021406
.10.1115/1.4028349
8.
Amaro
,
R. L.
,
White
,
R. M.
,
Looney
,
C. P.
,
Drexler
,
E. S.
, and
Slifka
,
A. J.
,
2018
, “
Development of a Model for Hydrogen-Assisted Fatigue Crack Growth of Pipeline Steel
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p.
021403
.10.1115/1.4038824
9.
Slifka
,
A. J.
,
Drexler
,
E. S.
,
Amaro
,
R. L.
,
Hayden
,
L. E.
,
Stalheim
,
D. G.
,
Lauria
,
D. S.
, and
Hrabe
,
N. W.
,
2017
, “
Fatigue Measurement of Pipeline Steels for the Application of Transporting Gaseous Hydrogen
,”
ASME J. Pressure Vessel Technol.
,
140
(
1
), p.
011407
.10.1115/1.4038594
10.
Yamabe
,
J.
, and
Matsuoka
,
S.
,
2020
, “
Hydrogen Uptake, Tensile, and Fatigue Properties of a Barrier-Coated, Precipitation-Hardened Martensitic Stainless Steel With Exposure to High-Pressure Hydrogen Gas
,”
ASME J. Pressure Vessel Technol.
,
142
(
4
), p.
041501
.10.1115/1.4046513
11.
Jawad
,
M.
,
Wang
,
Y.
, and
Feng
,
Z.
,
2020
, “
Steel–Concrete Composite Pressure Vessels for Hydrogen Storage at High Pressures
,”
ASME J. Pressure Vessel Technol.
,
142
(
2
), p.
021202
.10.1115/1.4044164
12.
Zhang
,
C.
,
Shao
,
Y.
,
Shen
,
W.
,
Li
,
H.
,
Nan
,
Z.
,
Dong
,
M.
,
Bian
,
J.
, and
Cao
,
X.
,
2023
, “
Key Technologies of Pure Hydrogen and Hydrogen-Mixed Natural Gas Pipeline Transportation
,”
Affil. China Pet. Eng. Constr. Corp. North China Co.
,
8
(
22
), pp.
19212
19222
.10.1021/acsomega.3c01131
13.
Drexler
,
E. S.
,
Amaro
,
R. L.
,
Slifka
,
A. J.
,
Bradley
,
P. E.
, and
Lauria
,
D. S.
,
2018
, “
Operating Hydrogen Gas Transmission Pipelines at Pressures Above 21 MPa
,”
ASME J. Pressure Vessel Technol.
,
140
(
6
), p.
061702
.10.1115/1.4041689
14.
Vries
,
H. D.
,
Florisson
,
O.
,
Tiekstra
,
G. C.
, and
Patel
,
S.
,
2007
, “
Safe Operation of Natural Gas Appliances Fueled With Hydrogen/Natural Gas Mixtures (Progress Obtained in the Naturalhy-Project)
,”
Proceedings of the International Conference on Hydrogen Safety
, San Sebastian, Spain, pp.
11
13
.https://www.semanticscholar.org/paper/SAFEOPERATION-OF-NATURAL-GAS-APPLIANCES-FUELED-GASVries/5e5225506f1983076f026648b6ac8fa504d13454
15.
Patel
,
S.
,
2020
, “
WindGas Falkenhagen: Pioneering ‘Green’ Gas Production
,”
Power
,
164
(
9
), pp.
30
31
.
16.
2014
, “
GRHYD Project to Demo Solid-State H2 Storage
,”
Mod. Power Syst.
,
34
(
2
), p.
39
.
17.
Isaac
,
T.
,
2019
, “
HyDeploy: The UK's First Hydrogen Blending Deployment Project
,”
Clean Energy
,
3
(
2
), pp.
114
125
.
18.
Hartley
,
P. G.
, and
Au
,
V.
,
2020
, “
Towards a Large-Scale Hydrogen Industry for Australia
,”
CSIRO Energy
,
6
(
12
), pp.
1346
1348
.10.1016/j.eng.2020.05.024
19.
Erdener
,
B. C.
,
Sergi
,
B.
,
Guerra
,
O. J.
,
Chueca
,
A. L.
,
Pambour
,
K.
,
Brancucci
,
C.
, and
Hodge
,
B.-M.
,
2023
, “
A Review of Technical and Regulatory Limits for Hydrogen Blending in Natural Gas Pipelines
,”
Int. J. Hydrogen Energy
,
48
(
14
), pp.
5595
5617
.10.1016/j.ijhydene.2022.10.254
20.
Li
,
J.
,
Su
,
Y.
,
Zhang
,
H.
, and
Yu
,
B.
,
2021
, “
Research Progresses on Pipeline Transportation of Hydrogen-Blended Natural Gas
,”
Nat. Gas Ind.
,
41
(
4
), pp.
137
–1
52
.10.3787/j.issn.1000-0976.2021.04.015
21.
Eames
,
I.
,
Austin
,
M.
, and
Wojcik
,
A.
,
2022
, “
Injection of Gaseous Hydrogen Into a Natural Gas Pipeline
,”
Int. J. Hydrogen Energy
,
47
(
61
), pp.
25745
25754
.10.1016/j.ijhydene.2022.05.300
22.
Wahl
,
J.
, and
Kallo
,
J.
,
2020
, “
Quantitative Valuation of Hydrogen Blending in European Gas Grids and Its Impact on the Combustion Process of Large-Bore Gas Engines
,”
Int. J. Hydrogen Energy
,
45
(
56
), pp.
32534
32546
.10.1016/j.ijhydene.2020.08.184
23.
Zhuang
,
Z.
,
Yan
,
J.
,
Sun
,
C.
,
Wang
,
H.
,
Wang
,
Y.
, and
Wu
,
Z.
,
2020
, “
The Numerical Simulation of a New Double Swirl Static Mixer for Gas Reactants Mixing
,”
Chin. J. Chem. Eng.
,
28
(
9
), pp.
2438
2446
.10.1016/j.cjche.2020.05.008
24.
Kong
,
M.
,
2021
, “
Investigation of Mixing Behavior of Hydrogen Blended to Natural Gas in Gas Network
,”
Inst. Process Equip. Control Eng.
,
13
(
8
), p.
4255
.10.3390/su13084255
25.
Trouvé
,
M. T.
,
Sauvage
,
M. É.
,
Mockly
,
M. D.
,
Chambon
,
M. P.
,
Noé
,
M. J.-M.
, and
Quang
,
M. S. R. V.
,
2021
, “
Technical and Economic Conditions for Injecting Hydrogen Into Natural Gas Networks
,” Report H2-EN, Paris, French.
26.
Bin
,
Y.
,
Ying
,
Z.
,
Limiao
,
S.
, and
Xingyu
,
Z.
,
2023
, “
Optimize the Rectifier Structure to Improve the Accuracy of Gas Ultrasonic Flowmeter Under Low Flow Conditions
,”
J. Phys.: Conf. Ser.
,
2458
(
1
), p.
012031
.10.1088/1742-6596/2458/1/012031
27.
Yuan
,
Y.
,
Li
,
S.
,
Zheng
,
J.
, and
Li
,
M.
,
2021
, “
CFD-Aided Investigation of Combined Flow Conditioners for Gas Ultrasonic Flow Meter
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
28
(
5
), pp.
611
620
.10.1007/s12204-021-2378-1
28.
Manshoor
,
B.
,
Nicolleau
,
F. C. G. A.
, and
Beck
,
S. B. M.
,
2011
, “
The Fractal Flow Conditioner for Orifice Plate Flow Meters
,”
Flow Meas. Instrum.
,
22
(
3
), pp.
208
214
.10.1016/j.flowmeasinst.2011.02.003
29.
Mouza
,
A. A.
,
Patsa
,
C.-M.
, and
Schönfeld
,
F.
,
2008
, “
Mixing Performance of a Chaotic Micro-Mixer
,”
Chem. Eng. Res. Des.
,
86
(
10
), pp.
1128
1134
.10.1016/j.cherd.2008.04.009
30.
Yu
,
Y. F.
,
Chen
,
Y.
,
Meng
,
H. B.
,
Yao
,
Y. J.
,
Liu
,
D.
, and
Wu
,
J. H.
,
2022
, “
Numerical Analysis of Thermal Dynamics and Mixing Performance in the Blade-Type Static Mixers
,”
J. Mech. Sci. Technol.
,
36
(
7
), pp.
3701
3716
.10.1007/s12206-022-0644-2
31.
Wang
,
X.
, and
Tang
,
Z.
,
2009
, “
Model Simulation and Error Quantitative Analysis of Pipeline of Ultrasonic Gas Flowmeter
,”
Chin. J. Sci. Instrum.
,
30
(
12
), pp.
2612
2618
.
You do not currently have access to this content.