Abstract

Oil and gas pipeline steels and welds are subjected to a wide variety of cyclic loadings: internal pressure variation, pulsation of gas pressure resulting from the cyclic operation of a reciprocating compressor at a gas compressor station, internal flow-induced vibration resulting from the turbulent flow within the pipe, vortex-induced vibration of a free-spanning section exposed to air (wind) for aboveground pipelines or water for water-crossing pipelines, and cyclic thermal stresses developed by significant changes in temperature due to seasonal changes or changes in operating temperatures. These cyclic loadings are very variable and complex. Considering the fatigue situations, a better understanding of the effects of fatigue test parameters on fatigue behaviors of pipeline steels and welds is required. Hence, in this study, the influences of fatigue test parameters on the Paris law coefficients were studied for pipeline steels and welds. It was analyzed for pipe steels of X65∼X100 and a girth weld of X70. Influences of material strength, crack orientation relative to the pipe axis, and frequency in the range of 1∼30 Hz were insignificant. It was found that the coefficients a1 and b2 of the m-ln(C) relationships linearly relied on the load ratio. The constants (α1, β1, α2, and β2) of these linear relationships between R-ratio and a1 (and b2) were determined for pipe steels.

References

1.
Semiga
,
V.
,
Tiku
,
S.
,
Dinovitzer
,
A.
, and
Wagster
,
W.
,
2016
, “
Evaluation of Fatigue in Gas Pipelines
,” ASME Paper No. IPC2016-64486
.10.1115/IPC2016-64486
2.
Lotsberg
,
I.
,
Mørk
,
K.
,
Valsgård
,
S.
, and
Sigurdsson
,
G.
,
2010
, “
System Effects in Fatigue Design of Long Pipes and Pipelines
,” ASME Paper No. OMAE2010-20647.10.1115/OMAE2010-20647
3.
Liu
,
Z.
,
Jia
,
W.
,
Liang
,
L.
, and
Duan
,
Z.
,
2019
, “
Analysis of Pressure Pulsation Influence on Compressed Natural Gas (CNG) Compressor Performance for Ideal and Real Gas Models
,”
Appl. Sci.
,
9
(
5
), pp.
1
21
.10.3390/app9050946
4.
Tiwari
,
A.
, and
Manepatil
,
S. S.
,
2007
, “
Simulation of Pressure Pulsation in Piping System of a Reciprocating Compressor
,”
Int. J. COMADEM
,
10
(
4
), pp.
32
38
.https://www.researchgate.net/publication/288375899_Simulation_of_pressure_pulsation_in_piping_system_of_a_reciprocating_compressor
5.
Wang
,
L.
,
Yang
,
Y.
,
Li
,
Y.
, and
Wang
,
Y.
,
2018
, “
Dynamic Behaviours of Horizontal Gas-Liquid Pipes Subjected to Hydrodynamic Slug Flow: Modelling and Experiments
,”
Int. J. Pressure Vessels Piping
,
161
, pp.
50
57
.10.1016/j.ijpvp.2018.02.005
6.
Gregory
,
G. A.
, and
Scott
,
D. S.
,
1969
, “
Correlation of Liquid Slug Velocity and Frequency in Horizontal Cocurrent Gas‐Liquid Slug Flow
,”
AIChE J.
,
15
(
6
), pp.
933
935
.10.1002/aic.690150623
7.
Honegger
,
D. G.
,
Nyman
,
D. J.
, and
Nyman
,
K. J.
,
1985
, “
Wind-Induced Fatigue Damage Estimated for Surface Oil Pipelines in the Arctic
,”
Oil Gas J.
,
83
(
27
), pp.
49
53
.
8.
Guan
,
D.
,
Hsieh
,
S.-C.
,
Chiew
,
Y.-M.
,
Low
,
Y. M.
, and
Wei
,
M.
,
2020
, “
Local Scour and Flow Characteristics Around Pipeline Subjected to Vortex-Induced Vibrations
,”
J. Hydraul. Eng.
,
146
(
1
), p.
33560149
.10.1061/(ASCE)HY.1943-7900.0001663
9.
Kharchenko
,
Y. A.
,
1995
, “
Determination of Residual Resource of the Mining Pipelines by Calculation Methods
,”
Khimicheskoe I Neftegazov. Mashinostr.
, (
12
), pp.
28
29
.
10.
CSA
,
2019
, “
CSA Z662:19 Oil and Gas Pipeline Systems
,” CSA Z662.
11.
API
,
2013
, “
Welding of Pipelines and Related Facilities
,” API 1104.
12.
ISO
,
2017
, “
Petroleum and Natural Gas Industries—Pipeline Transportation Systems
,” ISO 13623.
13.
DNV
,
2019
, “
Fatigue Design of Offshore Steel Structures
,” RP-C203.
14.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Fluids Eng.
,
85
(
4
), pp.
528
533
.10.1115/1.3656900
15.
Been
,
J.
,
Eadie
,
R.
, and
Sutherby
,
R.
,
2006
, “
Prediction of Environmentally Assisted Cracking on Gas and Liquid Pipelines
,” ASME Paper No. IPC2006-10345.10.1115/IPC2006-10345
16.
Van Boven
,
G.
,
Sutherby
,
R.
, and
King
,
F.
,
2002
, “
Characterizing Pressure Fluctuations on Buried Pipelines in Terms Relevant to Stress Corrosion Cracking
,” ASME Paper No. IPC2002-27149.10.1115/IPC2002-27149
17.
Riddell
,
W. T.
, and
Piascik
,
R. S.
,
1999
, “
Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024
,”
ASTM Spec. Tech. Publ.
,
1332
, pp.
407
425
.10.1520/STP14961S
18.
Cooke
,
R. J.
, and
Beevers
,
C. J.
,
1974
, “
Slow Fatigue Crack Propagation in Pearlitic Steels
,”
Mater. Sci. Eng.
,
13
(
3
), pp.
201
210
.10.1016/0025-5416(74)90191-8
19.
Robinson
,
J. L.
, and
Beevers
,
C. J.
,
1973
, “
The Effects of Load Ratio, Interstitial Content, and Grain Size on Low-Stress Fatigue-Crack Propagation in α-Titanium
,”
Met. Sci. J.
,
7
(
1
), pp.
153
159
.10.1179/030634573790445550
20.
Cooke
,
R. J.
, and
Beevers
,
C. J.
,
1973
, “
The Effect of Load Ratio on the Threshold Stresses for Fatigue Crack Growth in Medium Carbon Steels
,”
Eng. Fract. Mech.
,
5
(
4
), pp.
1061
1071
.10.1016/0013-7944(73)90075-1
21.
Ritchie
,
R. O.
,
1979
, “
Near-Threshold Fatigue-Crack Propagation in Steels
,”
Int. Met. Rev.
,
24
(
1
), pp.
205
230
.https://www2.lbl.gov/ritchie/Library/PDF/1979_Ritchie_IntMetalRev_NearThresholdFat.pdf
22.
Elber
,
W.
,
1971
, “
The Significance of Fatigue Crack Closure
,”
ASTM Spec. Tech. Publ.
,
486
, pp.
230
242
.https://www.astm.org/stp26680s.html
23.
Liaw
,
P. K.
,
Leax
,
T. R.
,
Swaminathan
,
V. P.
, and
Donald
,
J. K.
,
1982
, “
Influence of Load Ratio on Near-Threshold Fatigue Crack Propagation Behavior
,”
Scr. Metall.
,
16
(
7
), pp.
871
876
.10.1016/0036-9748(82)90247-2
24.
Dubey
,
S.
,
Soboyejo
,
A. B. O.
, and
Soboyejo
,
W. O.
,
1997
, “
Investigation of the Effects of Stress Ratio and Crack Fatigue Closure on the Micromechanisms of Fatigue Crack Growth in Ti-6Al-4V
,”
Acta Mater.
,
45
(
7
), pp.
2777
2787
.10.1016/S1359-6454(96)00380-1
25.
Ohta
,
A.
,
Kosuge
,
M.
, and
Sasaki
,
E.
,
1978
, “
Fatigue Crack Closure Over the Range of Stress Ratios From -1 to 0.8 Down to Stress Intensity Threshold Level in HT80 Steel and SUS304 Stainless Steel
,”
Int. J. Fract.
,
14
(
3
), pp.
251
264
.10.1007/BF00034687
26.
Ding
,
J.
,
Hall
,
R.
, and
Byrne
,
J.
,
2005
, “
Effects of Stress Ratio and Temperature on Fatigue Crack Growth in a Ti-6Al-4V Alloy
,”
Int. J. Fatigue
,
27
(
10–12
), pp.
1551
1558
.10.1016/j.ijfatigue.2005.06.007
27.
Mishra
,
M. P.
,
Packiaraj
,
C. C.
,
Ray
,
S. K.
,
Mannan
,
S. L.
, and
Borgstedt
,
H. U.
,
1997
, “
Influence of Sodium Environment and Load Ratio (R) on Fatigue Crack Growth Behaviour of a Type 316 LN Stainless Steel at 813 K
,”
Int. J. Pressure Vessel. Piping
,
70
(
1
), pp.
77
82
.10.1016/S0308-0161(96)00049-X
28.
Tsukuda
,
H.
,
Ogiyama
,
H.
, and
Shiraishi
,
T.
,
1995
, “
Fatigue Crack Growth and Closure at High Stress Ratios
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
(
4
), pp.
503
514
.10.1111/j.1460-2695.1995.tb01192.x
29.
Budiansky
,
B.
, and
Hutchinson
,
J. W.
,
1978
, “
Analysis of Closure in Fatigue Crack Growth
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
267
276
.10.1115/1.3424286
30.
Bachmann
,
V.
, and
Munz
,
D.
,
1975
, “
Crack Closure in Fatigue of a Titanium Alloy
,”
Int. J. Fract.
,
11
(
4
), pp.
713
716
.10.1007/BF00116381
31.
Katcher
,
M.
, and
Kaplan
,
M.
,
1974
, “
Effects of R-Factor and Crack Closure on Fatigue Crack Growth for Aluminum and Titanium Alloys
,”
Fracture Toughness and Slow-Stable Cracking
, STP559-EB, pp.
264
282
.10.1520/stp38604s
32.
Schijve
,
J.
,
1981
, “
Some Formulas for the Crack Opening Stress Level
,”
Eng. Fract. Mech.
,
14
(
3
), pp.
461
465
.10.1016/0013-7944(81)90034-5
33.
Chand
,
S.
, and
Garg
,
S. B. L.
,
1983
, “
Crack Closure Studies Under Constant Amplitude Loading
,”
Eng. Fract. Mech.
,
18
(
2
), pp.
333
347
.10.1016/0013-7944(83)90144-3
34.
Srivastava
,
Y. P.
, and
Garg
,
S. B. L.
,
1985
, “
Influence of R on Effective Stress Range Ratio and Crack Growth
,”
Eng. Fract. Mech.
,
22
(
6
), pp.
915
926
.10.1016/0013-7944(85)90032-3
35.
Kumar
,
R.
, and
Singh
,
K.
,
1995
, “
Influence of Stress Ratio on Fatigue Crack Growth in Mild Steel
,”
Eng. Fract. Mech.
,
50
(
3
), pp.
377
384
.10.1016/0013-7944(95)91547-3
36.
Costa
,
J. D. M.
, and
Ferreira
,
J. A. M.
,
1998
, “
Effect of Stress Ratio and Specimen Thickness on Fatigue Crack Growth of CK45 Steel
,”
Theor. Appl. Fract. Mech.
,
30
(
1
), pp.
65
73
.10.1016/S0167-8442(98)00044-5
37.
Forth
,
S. C.
,
Newman
,
J. C.
, and
Forman
,
R. G.
,
2003
, “
On Generating Fatigue Crack Growth Thresholds
,”
Int. J. Fatigue
,
25
(
1
), pp.
9
15
.10.1016/S0142-1123(02)00066-X
38.
Johan Singh
,
P.
,
Mukhopadhyay
,
C. K.
,
Jayakumar
,
T.
,
Mannan
,
S. L.
, and
Raj
,
B.
,
2007
, “
Understanding Fatigue Crack Propagation in AISI 316 (N) Weld Using Elber's Crack Closure Concept: Experimental Results From GCMOD and Acoustic Emission Techniques
,”
Int. J. Fatigue
,
29
(
12
), pp.
2170
2179
.10.1016/j.ijfatigue.2006.12.013
39.
Maddox
,
S. J.
,
Gurney
,
T. R.
,
Mummery
,
A. M.
, and
Booth
,
G. S.
,
1978
, “
An Investigation of the Influence of Applied Stress Ratio on Fatigue Crack Propagation in Structural Steels
,”
Weld. Inst.
, 72.
40.
Schmidt
,
R. A.
, and
Paris
,
P. C.
,
1972
, “
Threshold for Fatigue Crack Propagation and the Effects of Load Ratio and Frequency
,”
ASTM Spec. Tech. Publ.
,
536
, pp.
79
94
.10.1520/STP49638S
41.
Holper
,
B.
,
Mayer
,
H.
,
Vasudevan
,
A. K.
, and
Stanzl-Tschegg
,
S. E.
,
2004
, “
Near Threshold Fatigue Crack Growth at Positive Load Ratio in Aluminium Alloys at Low and Ultrasonic Frequency: Influences of Strain Rate, Slip Behaviour and Air Humidity
,”
Int. J. Fatigue
,
26
(
1
), pp.
27
38
.10.1016/S0142-1123(03)00092-6
42.
Musuva
,
J. K.
, and
Radon
,
J. C.
,
1979
, “
The Effect of Stress Ratio and Frequency on Fatigue Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
,
1
(
4
), pp.
457
470
.10.1111/j.1460-2695.1979.tb01333.x
43.
ASTM
,
2020
, “
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials
,” ASTM E399.
44.
ASTM
,
2016
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,” ASTM E647.
45.
Treinen
,
J. M.
,
McColskey
,
J. D.
,
Darcis
,
P. P.
,
Smith
,
R.
, and
Merritt
,
J.
,
2008
, “
Effects of Specimen Geometry on Fatigue-Crack Growth Rates in Pipeline Steels
,” ASME Paper No. IPC2008-64360.10.1115/IPC2008-64360
46.
Wanhill
,
R. J. H.
,
Galatolo
,
R.
, and
Looije
,
C. E. W.
,
1989
, “
Fractographic and Microstructural Analysis of Fatigue Crack Growth in a Ti-6Al-4V Fan Disc Forging
,”
Int. J. Fatigue
,
11
(
6
), pp.
407
416
.10.1016/0142-1123(89)90179-5
47.
Suzuki
,
H.
, and
Mcevily
,
A. J.
,
1979
, “
Microstructural Effects on Fatigue Crack Growth in a Low Carbon Steel
,”
Metall. Trans. A
,
10
(
4
), pp.
475
481
.10.1007/BF02697075
48.
Siqueira
,
A. F.
,
Baptista
,
C. A. R. P.
,
Guimarães
,
O. L. C.
, and
Ruckert
,
C. O. F. T.
,
2010
, “
Describing the Total Fatigue Crack Growth Curves for Aluminum Alloys With an Exponential Equation
,”
Proc. Eng.
,
2
(
1
), pp.
1905
1914
.10.1016/j.proeng.2010.03.205
49.
Radhakrishnan
,
V. M.
,
1984
, “
A Kink in the Fatigue Crack Growth Curve
,”
Int. J. Fatigue
,
6
(
4
), pp.
217
220
.10.1016/0142-1123(84)90052-5
50.
Yang
,
M.
,
Zhong
,
Y.
, and
Liang
,
Y. L.
,
2018
, “
Effect of Hierarchical Microstructures of Lath Martensite on the Transitional Behavior of Fatigue Crack Growth Rate
,”
Met. Mater. Int.
,
24
(
5
), pp.
970
980
.10.1007/s12540-018-0117-4
51.
Neto
,
D. M.
,
Sérgio
,
E. R.
,
Borges
,
M. F.
,
Borrego
,
L. P.
, and
Antunes
,
F. V.
,
2022
, “
Effect of Load Blocks on Fatigue Crack Growth
,”
Int. J. Fatigue
,
162
, p.
107001
.10.1016/j.ijfatigue.2022.107001
52.
Elber
,
W.
,
1970
, “
Fatigue Crack Closure Under Cyclic Tension
,”
Eng. Fract. Mech.
,
2
(
1
), pp.
37
45
.10.1016/0013-7944(70)90028-7
53.
BS
,
2019
, “
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,” BS 7910.
54.
Marvasti
,
M. H.
,
Chen
,
W.
,
Kania
,
R.
,
Worthingham
,
R.
, and
Van Boven
,
G.
,
2010
, “
Frequency Dependence of Fatigue and Corrosion Fatigue Crack Growth Rate
,” ASME Paper No. IPC2010-31007.10.1115/IPC2010-31007
55.
Li
,
H. F.
,
Zhang
,
P.
,
Wang
,
B.
, and
Zhang
,
Z. F.
,
2022
, “
Predictive Fatigue Crack Growth Law of High-Strength Steels
,”
J. Mater. Sci. Technol.
,
100
, pp.
46
50
.10.1016/j.jmst.2021.04.042
56.
Niccolls
,
E. H.
,
1976
, “
A Correlation for Fatigue Crack Growth Rate
,”
Scr. Metall.
,
10
(
4
), pp.
295
298
.10.1016/0036-9748(76)90079-X
57.
Baflon
,
J.-P.
,
Masounave
,
J.
, and
Bathias
,
C.
,
1977
, “
On the Relationship Between the Parameters of Paris' Law for Fatigue Crack Growth in Aluminium Alloys
,”
Scr. Metall.
,
11
(
12
), pp.
1101
1106
.10.1016/0036-9748(77)90315-5
58.
Lost
,
A.
,
1991
, “
The Effect of Load Ratio on the M−ln C Relationship
,”
Int. J. Fatigue
,
13
(
1
), pp.
25
33
.10.1016/0142-1123(91)90125-I
59.
Cortie
,
M. B.
, and
Garrett
,
G. G.
,
1988
, “
On the Correlation Between the C and m in the Paris Equation for Fatigue Crack Propagation
,”
Eng. Fract. Mech.
,
30
(
1
), pp.
49
58
.10.1016/0013-7944(88)90254-8
60.
Chen
,
C. J.
,
Su
,
M. N.
,
Wang
,
Y. H.
, and
Deng
,
X. W.
,
2022
, “
Experimental Research on the Fatigue Crack Growth Behaviour of Q420C
,”
J. Constr. Steel Res.
,
192
, p.
107241
.10.1016/j.jcsr.2022.107241
61.
Song
,
Y.
,
Chai
,
M.
, and
Han
,
Z.
,
2021
, “
Experimental Investigation of Fatigue Crack Growth Behavior of the 2.25cr1mo0.25v Steel Welded Joint Used in Hydrogenation Reactors
,”
Materials (Basel)
,
14
(
5
), p.
1159
.10.3390/ma14051159
62.
Long
,
J.
,
Zhang
,
L. J.
,
Zhang
,
Q. B.
,
Wang
,
W. K.
,
Zhong
,
J.
, and
Zhang
,
J. X.
,
2020
, “
Microstructural Characteristics and Low Cycle Fatigue Properties at 230 ° C of Different Weld Zone Materials From a 100 mm Thick Dissimilar Weld of Ultra-Supercritical Rotor Steel
,”
Int. J. Fatigue
,
130
, p.
105248
.10.1016/j.ijfatigue.2019.105248
63.
Li
,
S.
,
Kang
,
Y.
, and
Kuang
,
S.
,
2014
, “
Effects of Microstructure on Fatigue Crack Growth Behavior in Cold-Rolled Dual Phase Steels
,”
Mater. Sci. Eng. A
,
612
, pp.
153
161
.10.1016/j.msea.2014.06.002
64.
Zhai
,
T.
,
Wilkinson
,
A. J.
, and
Martin
,
J. W.
,
2000
, “
Crystallographic Mechanism for Fatigue Crack Propagation Through Grain Boundaries
,”
Acta Mater.
,
48
(
20
), pp.
4917
4927
.10.1016/S1359-6454(00)00214-7
65.
Gauthier
,
P.
,
De Rabaudy
,
H.
, and
Auvinet
,
J.
,
1973
, “
Secondary Cracking Process During Fatigue Crack Propagation
,”
Eng. Fract. Mech.
,
5
(
4
), pp.
977
981
.10.1016/0013-7944(73)90062-3
66.
Shi
,
Y. W.
,
Chen
,
B. Y.
, and
Zhang
,
J. X.
,
1990
, “
Effects of Welding Residual Stresses on Fatigue Crack Growth Behaviour in Butt Welds of a Pipeline Steel
,”
Eng. Fract. Mech.
,
36
(
6
), pp.
893
902
.10.1016/0013-7944(90)90266-J
67.
Kim
,
Y. P.
,
Kim
,
C. M.
,
Kim
,
W. S.
, and
Shin
,
K. S.
,
2007
, “
Fatigue Crack Growth Behavior in Girth Weld of Natural Gas Transmission Pipelines
,”
Key Eng. Mater.
,
345–346
, pp.
303
306
.10.4028/www.scientific.net/KEM.345-346.303
68.
Herrera
,
D. A.
, and
Velázquez
,
J. L. G.
,
2009
, “
Fatigue Crack Growth in SAW Welded Joints of Api 5 L Steel Pipe in the Short Radial Direction
,”
Adv. Mater. Res.
,
65
, pp.
9
18
.10.4028/www.scientific.net/AMR.65.9
You do not currently have access to this content.