Abstract

The optimization of the operation scheme is of great significance for improving the flexibility of thermal power plants in energy systems dominated by renewable energy. However, thermal stress and corresponding thermomechanical fatigue damage are the main limitations. A unified viscoplastic constitutive model coupled with anisotropic damage is introduced and validated by comparing the experimental and simulated hysteresis loops and cyclic softening curves. The model is implemented into the ansys software by using the USERMAT subroutine to numerically investigate the high-temperature fatigue behavior of a 1000 MW steam turbine rotor on different startup schedules. The critical areas of the rotor are studied in terms of temperature, stress, accumulated inelastic strain, and damage. Based on the damage analysis, the hot start schedule is optimized and validated. The startup time can be significantly shortened within permitted fatigue damage. Moreover, the life expenditure under different loading-up rates is calculated and the extra startup costs can be evaluated accordingly for wider application.

References

1.
Henderson
,
C.
,
2014
,
Increasing the Flexibility of Coal-Fired Power Plants
,
IEA Clean Coal Centre
,
London, UK
.
2.
Benato
,
A.
,
Stoppato
,
A.
, and
Mirandola
,
A.
,
2015
, “
Dynamic Behavior Analysis of a Three Pressure Level Heat Recovery Steam Generator During Transient Operation
,”
Energy
,
90
(
2
), pp.
1595
1605
.10.1016/j.energy.2015.06.117
3.
Shirakawa
,
M.
,
Kawai
,
K.
,
Arakawa
,
M.
, and
Nakayama
,
H.
,
2006
, “
Intelligent Start-Up Schedule Optimization System for a Thermal Power Plant
,”
IFAC Proc.
,
39
(
7
), pp.
189
194
.10.3182/20060625-4-CA-2906.00038
4.
Zhang
,
H.
,
Xie
,
D.
,
Yu
,
Y.
, and
Yu
,
L.
,
2016
, “
Online Optimal Control Schemes of Inlet Steam Temperature During Startup of Steam Turbines Considering Low Cycle Fatigue
,”
Energy
,
117
(
1
), pp.
105
115
.10.1016/j.energy.2016.10.075
5.
Ji
,
D.
,
Sun
,
J.
,
Dui
,
Y.
, and
Ren
,
J.
,
2017
, “
The Optimization of the Start-Up Scheduling for a 320 MW Steam Turbine
,”
Energy
,
125
, pp.
345
355
.10.1016/j.energy.2017.02.139
6.
Cui
,
L.
,
Wang
,
P.
,
Hoche
,
H.
,
Scholz
,
A.
, and
Berger
,
C.
,
2013
, “
The Influence of Temperature Transients on the Lifetime of Modern High-Chromium Rotor Steel Under Service-Type Loading
,”
Mater. Sci. Eng. A
,
560
, pp.
767
780
.10.1016/j.msea.2012.10.032
7.
Fournier
,
B.
,
Sauzay
,
M.
,
Caes
,
C.
,
Noblecourt
,
M.
,
Mottot
,
M.
,
Bougault
,
A.
,
Rabeau
,
V.
, and
Pineau
,
A.
,
2008
, “
Creep-Fatigue-Oxidation Interactions in a 9Cr-1Mo Martensitic Steel. Part I: Effect of Tensile Holding Period on Fatigue Lifetime
,”
Int. J. Fatigue
,
30
(
4
), pp.
649
662
.10.1016/j.ijfatigue.2007.05.007
8.
Farragher
,
T. P.
,
Scully
,
S.
,
O'Dowd
,
N. P.
, and
Leen
,
S. B.
,
2013
, “
Development of Life Assessment Procedures for Power Plant Headers Operated Under Flexible Loading Scenarios
,”
Int. J. Fatigue
,
49
, pp.
50
61
.10.1016/j.ijfatigue.2012.12.007
9.
Cui
,
L.
, and
Wang
,
P.
,
2014
, “
Two Lifetime Estimation Models for Steam Turbine Components Under Thermomechanical Creep-Fatigue Loading
,”
Int. J. Fatigue
,
59
, pp.
129
136
.10.1016/j.ijfatigue.2013.09.007
10.
Azeez
,
A.
,
Eriksson
,
R.
,
Leidermark
,
D.
, and
Calmunger
,
M.
,
2020
, “
Low Cycle Fatigue Life Modelling Using Finite Element Strain Range Partitioning for a Steam Turbine Rotor Steel
,”
Theo. Appl. Fract. Mech.
,
107
, p.
102510
.10.1016/j.tafmec.2020.102510
11.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
12.
Zhang
,
S.
, and
Xuan
,
F.
,
2017
, “
Interaction of Cyclic Softening and Stress Relaxation of 9-12% Cr Steel Under Strain-Controlled Fatigue-Creep Condition: Experimental and Modeling
,”
Int. J. Plast.
,
98
, pp.
45
64
.10.1016/j.ijplas.2017.06.007
13.
Wang
,
X.
,
Zhang
,
T.
,
Zhang
,
W.
,
Wahab
,
M. A.
, and
Gong
,
J.
,
2021
, “
An Improved Unified Viscoplastic Model for Modelling Low Cycle Fatigue and Creep Fatigue Interaction Loadings of 9-12%Cr Steel
,”
Euro. J. Mech. A/Solids
,
85
, p.
104123
.10.1016/j.euromechsol.2020.104123
14.
Zhang
,
T.
,
Wang
,
X.
,
Zhou
,
D.
,
Wang
,
R.
,
Jiang
,
Y.
,
Zhang
,
X.
,
Gong
,
J.
, and
Tu
,
S.
,
2022
, “
A Universal Constitutive Model for Hybrid Stress-Strain Controlled Creep-Fatigue Deformation
,”
Int. J. Mech. Sci.
,
225
, p.
107369
.10.1016/j.ijmecsci.2022.107369
15.
Lemaitre
,
J.
, and
Desmorat
,
R.
,
2005
,
Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures
,
Springer
,
Berlin
, Chap. 2.
16.
Zhang
,
G.
,
Zhao
,
Y.
,
Xue
,
F.
,
Mei
,
J.
,
Wang
,
Z.
,
Zhou
,
C.
, and
Zhang
,
L.
,
2011
, “
Creep-Fatigue Interaction Damage Model and Its Application in Modified 9Cr-1Mo Steel
,”
Nucl. Eng. Des.
,
241
(
12
), pp.
4856
4861
.10.1016/j.nucengdes.2011.08.076
17.
Lu
,
J.
,
Sun
,
W.
,
Becker
,
A.
, and
Saad
,
A. A.
,
2015
, “
Simulation of the Fatigue Behavior of a Power Plant Steel With a Damage Variable
,”
Int. J. Mech. Sci.
,
100
, pp.
145
157
.10.1016/j.ijmecsci.2015.06.019
18.
Wang
,
W.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Liu
,
Y.
,
2016
, “
Study of Creep-Fatigue Behavior in a 1000 MW Rotor Using a Unified Viscoplastic Constitutive Model With Damage
,”
Int. J. Dam. Mech.
,
25
(
2
), pp.
178
202
.10.1177/1056789515576766
19.
Wang
,
W.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Liu
,
Y.
,
2016
, “
Influence of High-Temperature Dwell Time on Creep-Fatigue Behavior in a 1000 MW Steam Turbine Rotor
,”
Eng. Fract. Mech.
,
166
, pp.
1
22
.10.1016/j.engfracmech.2016.08.018
20.
Kyaw
,
S. T.
,
Rouse
,
J. P.
,
Lu
,
J.
, and
Sun
,
W.
,
2016
, “
Determination of Material Parameters for a Unified Viscoplasticity-Damage Model for a P91 Power Plant Steel
,”
Int. J. Mech. Sci.
,
115-116
, pp.
168
179
.10.1016/j.ijmecsci.2016.06.014
21.
Xie
,
X.
,
Jiang
,
W.
,
Chen
,
J.
,
Zhang
,
X.
, and
Tu
,
S.
,
2019
, “
Cyclic Hardening/Softening Behavior of 316 L Stainless Steel at Elevated Temperature Including Strain-Rate and Strain-Range Dependence: Experimental and Damage-Coupled Constitutive Modeling
,”
Int. J. Plast.
,
114
, pp.
196
214
.10.1016/j.ijplas.2018.11.001
22.
Guo
,
Z.
,
Huang
,
D.
,
Yan
,
X.
,
Zhang
,
X.
,
Qi
,
M.
, and
Fan
,
J.
,
2020
, “
A Damage Coupled Elastic-Plastic Constitutive Model and Its Application on Low Cycle Fatigue Life Prediction of Turbine Blade
,”
Int. J. Fatigue
,
131
, p.
105298
.10.1016/j.ijfatigue.2019.105298
23.
Li
,
D.
,
Li
,
M.
,
Shang
,
D.
,
Gupta
,
A.
, and
Sun
,
W.
,
2021
, “
Physically-Based Modeling of Cyclic Softening and Damage Behaviors for a Martensitic Turbine Rotor Material at Elevated Temperature
,”
Int. J. Fatigue
,
142
, p.
105956
.10.1016/j.ijfatigue.2020.105956
24.
Ji
,
D.
,
Sun
,
J.
,
Sun
,
Q.
,
Guo
,
H.
,
Ren
,
J.
, and
Zhu
,
Q.
,
2018
, “
Optimization of Start-Up Scheduling and Life Assessment for a Steam Turbine
,”
Energy
,
160
, pp.
19
32
.10.1016/j.energy.2018.07.015
25.
Benaarbia
,
A.
,
Rae
,
Y.
, and
Sun
,
W.
,
2018
, “
Unified Viscoplasticity Modelling and Its Application to Fatigue-Creep Behavior of Gas Turbine Rotor
,”
Int. J. Mech. Sci.
,
136
, pp.
36
49
.10.1016/j.ijmecsci.2017.12.008
26.
Rae
,
Y.
,
Benaarbia
,
A.
,
Hughes
,
J.
, and
Sun
,
W.
,
2019
, “
Experimental Characterisation and Computational Modelling of Cyclic Viscoplastic Behavior of Turbine Steel
,”
Int. J. Fatigue
,
124
, pp.
581
594
.10.1016/j.ijfatigue.2019.01.022
27.
Hong
,
H.
,
Wang
,
W.
, and
Liu
,
Y.
,
2019
, “
High-Temperature Fatigue Behavior of a Steam Turbine Rotor Under Flexible Operating Conditions With Variable Loading Amplitudes
,”
Int. J. Mech. Sci.
,
163
, p.
105121
.10.1016/j.ijmecsci.2019.105121
28.
Sangid
,
M. D.
,
2013
, “
The Physics of Fatigue Crack Initiation
,”
Int. J. Fatigue
,
57
, pp.
58
72
.10.1016/j.ijfatigue.2012.10.009
29.
Basirat
,
M.
,
Shrestha
,
T.
,
Potirniche
,
G. P.
,
Charit
,
I.
, and
Rink
,
K.
,
2012
, “
A Study of the Creep Behavior of Modified 9Cr-1Mo Steel Using Continuum-Damage Modeling
,”
Int. J. Plast.
,
37
, pp.
95
107
.10.1016/j.ijplas.2012.04.004
30.
Lemaitre
,
J.
, and
Chaboche
,
J.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
, Chap. 7.
31.
Betten
,
J.
,
1992
, “
Applications of Tensor Functions in Continuum Damage Mechanics
,”
Int. J. Dam. Mech.
,
1
(
1
), pp.
47
59
.10.1177/105678959200100103
32.
Lemaitre
,
J.
,
Desmorat
,
R.
, and
Sauzay
,
M.
,
2000
, “
Anisotropic Damage Law of Evolution
,”
Euro. J. Mech. A/Solids
,
19
(
2
), pp.
187
208
.10.1016/S0997-7538(00)00161-3
33.
Barrett
,
R. A.
,
O'Donoghue
,
P. E.
, and
Leen
,
S. B.
,
2013
, “
An Improved Unified Viscoplastic Constitutive Model for Strain-Rate Sensitivity in High Temperature Fatigue
,”
Int. J. Fatigue
,
48
, pp.
192
204
.10.1016/j.ijfatigue.2012.11.001
34.
Neto
,
E. S.
,
Peric
,
D.
, and
Owens
,
D.
,
2008
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley
,
Hoboken, NJ
, Chap. 11.
35.
Han
,
J.
,
Marimuthu
,
K. P.
,
Koo
,
S.
, and
Lee
,
H.
,
2020
, “
Numerical Implementation of Modified Chaboche Kinematic Hardening Model for Multiaxial Ratcheting
,”
Comp. Struct.
,
231
, p.
106222
.10.1016/j.compstruc.2020.106222
36.
Zhang
,
T.
,
McHugh
,
P. E.
, and
Leen
,
S. B.
,
2012
, “
Finite Element Implementation of Multiaxial Continuum Damage Mechanics for Plain and Fretting Fatigue
,”
Int. J. Fatigue
,
44
, pp.
260
272
.10.1016/j.ijfatigue.2012.04.011
37.
Wang
,
W.
,
Buhl
,
P.
, and
Klenk
,
A.
,
2015
, “
A Unified Viscoplastic Constitutive Model With Damage for Multi-Axial Creep-Fatigue Loading
,”
Int. J. Dam. Mech.
,
24
(
3
), pp.
363
382
.10.1177/1056789514537007
38.
Wang
,
W.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Liu
,
Y.
,
2016
, “
A Continuum Damage Mechanics-Based Viscoplastic Model of Adapted Complexity for High-Temperature Creep-Fatigue Loading
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092501
.10.1115/1.4032679
39.
Shi
,
J.
,
Deng
,
Z.
, and
Yang
,
Y.
,
2010
, “
Calculation of Heat Transfer Coefficients of Blade Grooves for Supercritical and Ultra-Supercritical Steam Turbine Rotors
,”
J. Chin. Soc. Pow. Eng.
, 30(7), pp.
478
484
.https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjMxMjI2Eg1kbGdjMjAxMDA3MDAyGgh6ZHhqaDliaw%3D%3D
40.
Banaszkiewicz
,
M.
,
2018
, “
Numerical Investigations of Crack Initiation in Impulse Steam Turbine Rotors Subject to Thermo-Mechanical Fatigue
,”
Appl. Therm. Eng.
,
138
, pp.
761
773
.10.1016/j.applthermaleng.2018.04.099
You do not currently have access to this content.