Abstract

The purpose of this research is to understand the formation of double fillet welds using finite element modeling. This computational study is intended to be an advanced way to predict heat transfer mechanisms in the melt pool prior to empirical testing. AISI 304 austenitic stainless steels are used in this study, and a simplified model of fin-tubes is introduced to simulate submerged arc welding (SAW) on a water wall panel structure. The welding process is numerically implemented by a moving heat source, and the heat distribution is determined by thermo-physical phenomena, e.g., recoil pressure and surface tension due to the welding. Double fillet welding refers to two separate welds which have to be made one by one. A new coordinate system is thus introduced at every starting point of the welding process to overcome geometrical complexities. The computational results are discussed to compare the weld bead estimation with the experimental findings. The melting and evaporation of the metal appear appropriate to explain the formation of weld beads in submerged arc welding since the modeling is in good agreement with the experiments.

References

1.
Viswanathan
,
R.
,
Henry
,
J. F.
,
Tanzosh
,
J.
,
Stanko
,
G.
,
Shingledecker
,
J.
,
Vitalis
,
B.
, and
Purgert
,
R.
,
2005
, “
U.S. program on Materials Technology for Ultrasupercritical Coal Power Plants
,”
J. Mater. Eng. Perform.
,
14
(
3
), pp.
281
292
.10.1361/10599490524039
2.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
ASME Trans. Am. Soc. Mech. Eng.
,
68
(
8
), pp.
849
865
.10.1115/1.4018624
3.
Swift-Hook
,
D. T.
, and
Gick
,
A. E. F.
,
1973
, “
Penetration Welding With Lasers
,”
Weld. Res. Suppl.
, 52(11), pp.
492
499
.http://files.aws.org/wj/supplement/WJ_1973_11_s492.pdf
4.
Hibbitt
,
H. D.
, and
Marcal
,
P. V.
,
1973
, “
A Numerical Thermo-Mechanical Model of the Welding and Subsequent Loading of a Fabricated Structure
,”
Comput. Struct.
,
3
(
5
), pp.
1145
1174
.10.1016/0045-7949(73)90043-6
5.
Muraki
,
T.
,
Bryan
,
J.
, and
Masubuchi
,
K.
,
1975
, “
Analysis of Thermal Stresses and Metal Movement During Welding—Part I: Analytical Study
,”
ASME J. Eng. Mater. Technol.
,
97
(
1
), pp.
81
84
.10.1115/1.3443265
6.
Friedman
,
E.
,
1978
, “
Analysis of Weld Puddle Distortion and Its Effect on Penetration
,”
Weld. Res. Suppl.
, 57(6), pp.
161
166
.http://files.aws.org/wj/supplement/WJ_1978_06_s161.pdf
7.
Brown
,
S.
, and
Song
,
H.
,
1992
, “
Finite Element Simulation of Welding of Large Structures
,”
ASME J. Manuf. Sci. Eng.
,
114
(
4
), pp.
441
451
.10.1115/1.2900696
8.
Nart
,
E.
, and
Celik
,
Y.
,
2013
, “
A Practical Approach for Simulating Submerged Arc Welding Process Using FE Method
,”
J. Constr. Steel Res.
,
84
, pp.
62
71
.10.1016/j.jcsr.2013.02.005
9.
Podder
,
D.
,
Mandal
,
N. R.
, and
Das
,
S.
,
2014
, “
Heat Source Modeling and Analysis of Submerged Arc Welding
,”
Weld. J.
,
93
(
5
), pp.
183
192
.https://www.researchgate.net/publication/264540297_Heat_Source_Modeling_and_Analysis_of_Submerged_Arc_Welding
10.
Zargar
,
S. H.
,
Farahani
,
M.
, and
Givi
,
M. K. B.
,
2015
, “
Numerical and Experimental Investigation on the Effects of Submerged Arc Welding Sequence on the Residual Distortion of the Fillet Welded Plates
,”
Proc. Inst. Mech. Eng., Part B
,
230
(
4
), pp.
654
661
.10.1177/0954405414560038
11.
Ansaripour
,
N.
,
Heidari
,
A.
, and
Eftekhari
,
S. A.
, “
Multi-Objective Optimization of Residual Stresses and Distortion in Submerged Arc Welding Process Using Genetic Algorithm and Harmony Search
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
4
), pp.
862
871
.10.1177/0954406219885977
12.
Goldak
,
J.
,
Bibby
,
M.
,
Moore
,
J.
,
House
,
R.
, and
Patel
,
B.
,
1986
, “
Computer Modeling of Heat Flow in Welds
,”
Metall. Trans. B
,
17
(
3
), pp.
587
600
.10.1007/BF02670226
13.
Michaleris
,
P.
, and
DeBiccari
,
A.
,
1997
, “
Prediction of Welding Distortion
,”
Weld. Res. Suppl.
, 76(4), pp.
172
181
.https://canteach.candu.org/Content%20Library/20053410.pdf
14.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
, pp.
137
162
.
15.
Gardner
,
L.
,
Insausti
,
A.
,
Ng
,
K. T.
, and
Ashraf
,
M.
,
2010
, “
Elevated Temperature Material Properties of Stainless Steel Alloys
,”
J. Constr. Steel Res.
,
66
(
5
), pp.
634
647
.10.1016/j.jcsr.2009.12.016
16.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02667333
17.
Liu
,
Y. F.
,
Hu
,
Z. L.
,
Shi
,
D. H.
, and
Yu
,
K.
,
2013
, “
Experimental Investigation of Emissivity of Steel
,”
Int. J. Thermophys.
,
34
(
3
), pp.
496
506
.10.1007/s10765-013-1421-3
18.
Shurtz
,
R. C.
,
2018
,
Total Hemispherical Emissivity of Metals Applicable to Radiant Heat Testing
,
Sandia National Laboratories
,
Albuquerque, NM
.
19.
Jeffus
,
L. F.
,
2020
,
Welding: Principles and Applications
, 9th ed.,
Cengage Learning
,
Boston, MA
, p.
561
.
20.
Goldak
,
J. A.
, and
Akhlaghi
,
M.
,
2005
,
Computational Welding Mechanics
, 1st ed.,
Springer
,
New York
.
21.
Kim
,
J.
,
Im
,
S.
, and
Kim
,
H. G.
,
2005
, “
Finite Element Analysis of Arc-Welding Process by Parallel Computation
,”
Q. J. Jpn. Weld. Soc.
,
23
(
2
), pp.
203
208
.10.2207/qjjws.23.203
22.
Brillo
,
J.
, and
Egry
,
I.
,
2005
, “
Surface Tension of Nickel, Copper, Iron and Their Binary Alloys
,”
J. Mater. Sci.
,
40
(
9–10
), pp.
2213
2216
.10.1007/s10853-005-1935-6
23.
Lautrup
,
B.
,
2011
,
Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
24.
Graebel
,
W.
,
2001
,
Engineering Fluid Mechanics
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
25.
Matsumoto
,
T.
,
Misono
,
T.
,
Fujii
,
H.
, and
Nogi
,
K.
,
2005
, “
Surface Tension of Molten Stainless Steels Under Plasma Conditions
,”
J. Mater. Sci.
,
40
(
9
), pp.
2197
2200
.10.1007/s10853-005-1932-9
26.
Zacharia
,
T.
, and
David
,
S. A.
,
1991
, “
Computational Modeling of GTA (Gas Tungsten Arc) Welding With Emphasis on Surface Tension Effects
,”
ASME-JSME International Solar Energy Conference
,
Reno
, NV, Mar. 17–22.https://www.osti.gov/biblio/6292869
27.
Kim
,
C. S.
,
1975
, “
Thermophysical Properties of Stainless Steels
,” Department of Energy, Argonne, Report No.
ANL-75-55
.https://www.osti.gov/servlets/purl/4152287
28.
Wahab
,
M. A.
,
Painter
,
M. J.
, and
Davies
,
M. H.
, May
1998
, “
The Prediction of the Temperature Distribution and Weld Pool Geometry in the Gas Metal Arcprocess
,”
J. Mater. Process. Technol.
,
77
(
1–3
), pp.
233
239
.10.1016/S0924-0136(97)00422-6
29.
Geyer
,
W. B.
,
2000
,
Handbook of Storage Tank Systems: Codes: Regulations, and Designs
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
30.
Sheng
,
P. S.
, and
Joshi
,
V. S.
,
1995
, “
Analysis of Heat-Affected Zone Formation for Laser Cutting of Stainless Steel
,”
J. Mater. Process. Technol.
,
53
(
3–4
), pp.
879
892
.10.1016/0924-0136(94)01761-O
You do not currently have access to this content.