Abstract

The structural strength of buried pipeline may be reduced by local wall thinning owing to corrosion in long-term operations. In seismic active area, it is necessary to ensure the integrity of buried pipeline with wall thinning against seismic motion. This study proposed a seismic assessment formula for a pipe with wall thinning subjected to cyclic axial loading assuming seismic motion. Cyclic axial loading experiments using pipes with wall thinning and finite element analysis (FEA) were conducted to study the failure behavior. The pipe with wall thinning deformed starting from the wall-thinning part, and finally plastic collapse due to elephant foot buckling or leakage at the wall thinning due to low-cycle fatigue occurred in several to ten and several cycles. Based on the deformation mechanism at wall thinning, a seismic assessment formula was proposed. The proposed formula can easily evaluate the seismic performance of the pipe with wall thinning against design seismic motion. The formula was validated by the results of experiments and FEA. In addition, based on the proposed formula, the assessment curves for an allowable wall-thinning size against design seismic motion were illustrated. The formula can be used to formulate standards and assess the safety of pipes with wall thinning that are subjected to seismic motion.

References

1.
ASME
,
2009
, “
Manual for Determining the Remaining Strength of Corroded Pipelines
,” ASME, New York, Paper No.
B31G
.https://www.asme.org/getmedia/7336b61b-5762-47ca-bdcb-8a4e0de6f162/33501.pdf
2.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1989
, “
A Modified Criterion for Evaluation the Remaining Strength of Corroded Pipe
,”
Pipeline Research Committee of the American Gas Association
, Report No.
PR-3-805
.https://www.osti.gov/biblio/7181509
3.
DNV
,
2004
, “
Recommended Practice of Corroded Pipelines
,” No. DNV RP-F10.
4.
Canadian Standards Association (CSA),
2007
, “
Oil and Gas Pipeline System
” CSA, Toronto, ON, Canada.
5.
API and ASME,
2021
, “
API 579-1/ASME FFS-1 Fitness-for-Service
,” ASME, New York.https://cadeengineering.com/asme-api-579-1-asme-ffs-1-new-edition-2021/
6.
Japanese Gas Association,
2000
, “Recommended Practice for Earthquake-Resistant Design of High Pressure Gas Pipeline,” Japanese Gas Association, Yokohama, Kanagawa, Japan (in Japanese).
7.
Toki
,
K.
,
Fukumori
,
Y.
,
Sako
,
M.
, and
Tsubakimoto
,
T.
,
1983
, “
Recommended Practice for Earthquake Resistant Design of High Pressure Gas Pipeline
,” ASME, New York, Paper No.
PVP-77
, pp.
349
356
.https://www.osti.gov/biblio/5464081
8.
Koike
,
T.
,
Imai
,
T.
, and
Kaneko
,
T.
,
1992
, “
Large Deformation Analysis of Buried Pipeline Under Seismic Ground Movement
,”
Pressure Vessel Piping
,
237
(
1
), pp.
89
95
.
9.
Smith
,
M. Q.
, and
Waldhart
,
C. J.
,
2000
, “
Combined Loading Tests of Large Diameter Corroded Pipelines
,”
ASME
Paper No. IPC2000-191.10.1115/IPC2000-191
10.
Miyazaki
,
K.
,
Kanno
,
S.
,
Ishiwata
,
M.
,
Hasegawa
,
K.
,
Hwan Ahn
,
S. H.
, and
Ando
,
K.
,
1999
, “
Fracture Behavior of Carbon Steel Pipe With Local Wall Thinning Subjected to Bending Load
,”
Nucl. Eng. Des.
,
191
(
2
), pp.
195
204
.10.1016/S0029-5493(99)00141-7
11.
Kim
,
J. W.
, and
Park
,
C. Y.
,
2003
, “
Effect of Length of Thinning Area on the Failure Behavior of Carbon Steel Pipe Containing a Defect of Wall Thinning
,”
Nucl. Eng. Des.
,
220
(
3
), pp.
274
284
.10.1016/S0029-5493(02)00386-2
12.
Gentile
,
M.
,
Laudonia
,
C. A.
,
Marchionni
,
L.
,
Parrella
,
A.
,
Vichi
,
R.
, and
Vitali
,
L.
,
2015
, “
Metal Loss: Corrosion Defects Qualification and Structural Integrity Assessment
,”
ASME
Paper No. OMAE2015-41091.10.1115/OMAE2015-41091
13.
Shuai
,
Y.
,
Wang
,
X.
, and
Cheng
,
Y. F.
,
2021
, “
Buckling Resistance of an X80 Steel Pipeline at Corrosion Defect Under Bending Moment
,”
J. Natural Gas Sci. Eng.
,
93
, p.
104016
.10.1016/j.jngse.2021.104016
14.
Hashimoto
,
Y.
,
Yatabe
,
H.
,
Hagiwara
,
N.
, and
Oguchi
,
N.
,
2005
, “
Effects of Local Metal Loss on Deformability of Line Pipes Subjected to Compressive Load
,”
ASME
Paper No. OMAE2005-67280.10.1115/OMAE2005-67280
15.
Chen
,
Q.
,
Khoo
,
H. A.
,
Cheng
,
R.
, and
Zhou
,
J.
,
2010
, “
Remaining Local Buckling Resistance of Corroded Pipelines
,”
ASME
Paper No. IPC2010-31512.10.1115/IPC2010-31512
16.
Zhou
,
H.
,
Liu
,
M.
,
Ayton
,
B.
,
Bergman
,
J.
, and
Nanney
,
S.
,
2016
, “
Tensile and Compressive Strain Capacity of Pipelines With Corrosion Anomalies
,”
ASME
Paper No. IPC2016-6462810.1115/IPC2016-64628.
17.
Cai
,
J.
,
Jiang
,
X.
,
Lodewijks
,
G.
,
Pei
,
Z.
, and
Wu
,
W.
,
2018
, “
Residual Ultimate Strength of Damaged Seamless Metallic Pipelines With Metal Loss
,”
Mar. Struct.
,
58
, pp.
242
253
.10.1016/j.marstruc.2018.05.006
18.
Zhou
,
H.
,
Wang
,
Y. Y.
,
Stephens
,
M.
,
Bergman
,
J.
, and
Nanney
,
S.
,
2018
, “
Tensile and Compressive Strain Capacity in the Presence of Corrosion Anomalies
,”
ASME
Paper No. IPC2018-78802.10.1115/IPC2018-78802
19.
Liu
,
B.
,
Tan
,
X.
,
Bolati
,
D.
,
An
,
H.
, and
Jiang
,
J.
,
2020
, “
Axial Compressive Loading Capacity of Pressurized Energy Pipeline With Corrosion Defects
,”
ASME
Paper No. IPC2020-9616.10.1115/IPC2020-9616
20.
Miwa
,
M.
,
Oguchi
,
N.
,
Okajima
,
Y.
, and
Kurobe
,
T.
,
2004
, “
Cyclic Deformability of Steel Pipes With Local Metal Loss and Repaired Pipes
,”
ASME
Paper No. IPC2004-0
281
.10.1115/IPC2004-0281
21.
Hashimoto
,
Y.
,
Yatabe
,
H.
,
Hagiwara
,
N.
, and
Oguchi
,
N.
,
2006
, “
Earthquake Resistance of Pipeline With Local Metal Loss Subjected to Cyclic Loading
,”
ASME
Paper No. OMAE-92497.10.1115/OMAE2006-92497
22.
Mitsuya
,
M.
, and
Motohashi
,
H.
,
2013
, “
Cyclic Deformation Behavior and Buckling of Pipeline With Local Metal Loss in Response to Axial Seismic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), pp.
1
9
.10.1115/1.4024451
23.
Minami
,
F.
,
Morikawa
,
J.
,
Oshima
,
M.
,
Toyoda
,
M.
,
Konda
,
N.
,
Arimochi
,
K.
,
Ishilawa
,
N.
,
Kubo
,
T.
, and
Shimanuki
,
H.
,
1997
, “
Strength and Fracture Properties of Structural Steel Under Dynamic Loading
,”
Proceedings of the 16th International Conference on Offshore Mechanics and Arctic Engineering
, Yokohama, Japan, Apr. 13–17, pp.
283
292
.
24.
Yoshizaki
,
K.
, and
Uguchi
,
N.
,
1998
, “
Effect of Stain Rate on Stress–Strain Properties of Gas Pipeline Steel
,”
Proceedings of the 10th Japan Earthquake Engineering Symposium, Yokohama, Japan, Nov. 25–27
, pp.
3171
3174
.
25.
Takahashi
,
K.
,
Ando
,
K.
,
Matsuo
,
K.
, and
Urabe
,
Y.
,
2014
, “
Estimation of Low-Cycle Fatigue Life of Elbow Pipes Considering the Multi-Axial Stress Effect
,”
ASME J. Pressure Vessel Technol.
,
136
(
4
), pp.
1
8
.10.1115/1.4026903
26.
Manson
,
S. S.
,
1965
, “
Fatigue: A Complex Subject-Some Simple Approximations
,”
Exp. Mech.
,
5
(
4
), pp.
193
226
.10.1007/BF02321056
27.
Muralidharan
,
U.
, and
Manson
,
S. S.
, “
A Modified Universal Slopes Equation for Estimation of Fatigue Characteristics of Metals
,”
ASME J. Eng. Mater. Technol.
,
110
(
1
), pp.
55
58
.10.1115/1.3226010
28.
Weiss
,
V.
,
1972
, “
Material Ductility and Fracture Toughness of Metals
,”
Proceedings of the 1st International Conference on Mechanical Behavior of Material
, Kyoto, Japan, Aug., p.
159
.
29.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill, New York
.
30.
Kato
,
T.
,
Akiyama
,
H.
, and
Suzuki
,
H.
,
1973
, “
Inelastic Local Buckling of Steel Circular Tubes Under Pure Compression
,”
J. Struct. Constr. Eng.
,
204
, pp.
9
17
.
31.
Mitsuya
,
M.
, and
Yatabe
,
H.
,
2011
, “
Cyclic Deformation and Buckling Behavior of Pipe With Local Metal Loss Subjected to Seismic Ground Motion
,”
ASME
Paper No. PVP2011-57723.10.1115/PVP2011-57723
32.
Mitsuya
,
M.
,
2017
, “
True Stress–Strain Curve of Line Pipe Steels After Uniform Elongation
,”
J. Jpn. High Pressure Inst.
,
55
(
1
), pp.
12
21.
10.11181/hpi.55.12
You do not currently have access to this content.