Abstract

Long-distance water supply systems are important measures to improve the water resources distribution, and the water hammer protection devices such as air vessels are usually added in the project to ensure the safety and stable operation. However, the sediment particles are always ignored in the design. Hence, a numerical model and program were established for sediment laden water hammer based on the method of characteristics (MOC). Using the proposed model, the water hammer protection influences of sediment particles parameters are simulated for the same pipeline system of a water supply project. The result shows that the resistance loss of sediment-laden water in pipelines is larger than that of water, and the initial head of pump needed to be increased to ensure the water levels of downstream reservoirs are consistent. After power failure and pump stopping, the negative pressure wave of sediment-laden water is 2.97 m higher than that of water, and the theoretical minimum internal pressure along pipelines is 7.8 m lower. With the same air vessel protection, the lowest minimum internal pressure heads along pipelines decrease with the increase of quantities of sediment, while the results show no obvious influence by changes of median particle diameters. The lowest absolute pressure of pipeline could reach −0.69 m under the condition of 50 kg/m3 quantity of sediment and 0.05 mm median particle diameter. The relevant research results are of great significance sediment-laden water hammer numerical simulation and water hammer protection design.

References

1.
Zhang
,
C.
,
Nong
,
X.
,
Shao
,
D.
,
Zhong
,
H.
,
Shang
,
Y.
, and
Liang
,
J.
,
2021
, “
Multivariate Water Environmental Risk Analysis in Long-Distance Water Supply Project: A Case Study in China
,”
Ecol. Indic.
,
125
, p.
107577
.10.1016/j.ecolind.2021.107577
2.
Wan
,
W.
,
Zhang
,
B.
, and
Chen
,
X.
,
2018
, “
Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems
,”
Energies
,
12
(
1
), p.
108
.10.3390/en12010108
3.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.10.1016/j.jfluidstructs.2005.08.008
4.
Triki
,
A.
, and
Essaidi
,
B.
,
2022
, “
Investigation of Pump Failure-Induced Water Hammer Waves: A Case Study
,”
ASME J. Pressure Vessel Technol.
,
144
(
2
), p.
021403
.10.1115/1.4051512
5.
Stephenson
,
D.
,
2002
, “
Simple Guide for Design of Air Vessels for Water Hammer Protection of Pumping Lines
,”
J. Hydraulic Eng.
,
128
(
8
), pp.
792
797
.10.1061/(ASCE)0733-9429(2002)128:8(792)
6.
Kim
,
S. H.
,
2010
, “
Design of Surge Tank for Water Supply Systems Using the Impulse Response Method With the GA Algorithm
,”
J. Mech. Sci. Technol.
,
24
(
2
), pp.
629
636
.10.1007/s12206-010-0108-y
7.
Stephenson
,
D.
,
1997
, “
Effects of Air Valves and Pipework on Water Hammer Pressures
,”
J. Transp. Eng.
,
123
(
2
), pp.
101
106
.10.1061/(ASCE)0733-947X(1997)123:2(101)
8.
Rezaei
,
V.
,
Calamak
,
M.
, and
Bozkus
,
Z.
,
2017
, “
Performance of a Pumped Discharge Line With Combined Application of Protection Devices Against Water Hammer
,”
KSCE J. Civ. Eng.
,
21
(
4
), pp.
1493
1500
.10.1007/s12205-016-0747-3
9.
Wan
,
W.
, and
Li
,
F.
,
2016
, “
Sensitivity Analysis of Operational Time Differences for a Pump–Valve System on a Water Hammer Response
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011303
.10.1115/1.4031202
10.
Sun
,
Q.
,
Wu
,
Y. B.
,
Xu
,
Y.
, and
Jang
,
T. U.
,
2016
, “
Optimal Sizing of an Air Vessel in a Long-Distance Water-Supply Pumping System Using the SQP Method
,”
J. Pipeline Syst. Eng. Pract.
,
7
(
3
), p.
05016001
.10.1061/(ASCE)PS.1949-1204.0000236
11.
Wan
,
W.
,
Huang
,
W.
, and
Li
,
C.
,
2014
, “
Sensitivity Analysis for the Resistance on the Performance of a Pressure Vessel for Water Hammer Protection
,”
ASME J. Pressure Vessel Technol.
,
136
(
1
), p.
011303
.10.1115/1.4025829
12.
Wang
,
X.
,
Zhang
,
J.
,
Yu
,
X.
,
Shi
,
L.
,
Zhao
,
W.
, and
Xu
,
H.
,
2019
, “
Formula for Selecting Optimal Location of Air Vessel in Long-Distance Pumping Systems
,”
Int. J. Pressure Vessels Piping
,
172
, pp.
127
133
.10.1016/j.ijpvp.2019.03.029
13.
Besharat
,
M.
,
Tarinejad
,
R.
,
Aalami
,
M. T.
, and
Ramos
,
H. M.
,
2016
, “
Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis
,”
Water Resources Manage.
,
30
(
8
), pp.
2687
2702
.10.1007/s11269-016-1310-1
14.
Shi
,
L.
,
Zhang
,
J.
,
Yu
,
X.
, and
Chen
,
S.
,
2019
, “
Water Hammer Protective Performance of a Spherical Air Vessel Caused by a Pump Trip
,”
Water Supply
,
19
(
6
), pp.
1862
1869
.10.2166/ws.2019.063
15.
Lyu
,
J.
,
Zhang
,
J.
,
Wang
,
X.
, and
Xu
,
T.
,
2021
, “
A Combined Water Hammer Protective Method for Optimizing the Volume of the Air Vessel in Water Supply Systems
,”
AQUA—Water Infrastruct., Ecosyst. Soc.
,
70
(
8
), pp.
1217
1230
.10.2166/aqua.2021.059
16.
Braga
,
A. S.
, and
Filion
,
Y.
,
2022
, “
The Interplay of Suspended Sediment Concentration, Particle Size and Fluid Velocity on the Rapid Deposition of Suspended Iron Oxide Particles in PVC Drinking Water Pipes
,”
Water Res. X
,
15
, p.
100143
.10.1016/j.wroa.2022.100143
17.
Tang
,
Y.
,
Zhu
,
D. Z.
,
Rajaratnam
,
N.
, and
van Duin
,
B.
,
2020
, “
Sediment Depositions in a Submerged Storm Sewer Pipe
,”
J. Environ. Eng.
,
146
(
10
), p.
04020118
.10.1061/(ASCE)EE.1943-7870.0001799
18.
Ebtehaj
,
I.
,
Bonakdari
,
H.
,
Safari
,
M. J. S.
,
Gharabaghi
,
B.
,
Zaji
,
A. H.
,
Riahi Madavar
,
H.
,
Sheikh Khozani
,
Z.
, et al.,
2020
, “
Combination of Sensitivity and Uncertainty Analyses for Sediment Transport Modeling in Sewer Pipes
,”
Int. J. Sediment Res.
,
35
(
2
), pp.
157
170
.10.1016/j.ijsrc.2019.08.005
19.
Montes
,
C.
,
Kapelan
,
Z.
, and
Saldarriaga
,
J.
,
2021
, “
Predicting Non-Deposition Sediment Transport in Sewer Pipes Using Random Forest
,”
Water Res.
,
189
, p.
116639
.10.1016/j.watres.2020.116639
20.
Li
,
Y.
,
Zhang
,
J.
,
Xu
,
H.
, and
Bai
,
Y.
,
2021
, “
Experimental Study on the Characteristics of Sediment Transport and Sorting in Pressurized Pipes
,”
Water
,
13
(
19
), p.
2782
.10.3390/w13192782
21.
Wasp
,
E. J.
,
Kenny
,
J. P.
, and
Gandhi
,
R. L.
,
1977
, “
Solid–Liquid Flow: Slurry Pipeline Transportation [Pumps, Valves, Mechanical Equipment, Economics
,”
Ser. Bulk Mater. Handl.
,
1
(
4
), pp.
101
109
.https://www.osti.gov/biblio/6343851
22.
Ferro
,
V.
, and
Nicosia
,
A.
,
2021
, “
Evaluating the Effects of Sediment Transport on Pipe Flow Resistance
,”
Water
,
13
(
15
), p.
2091
.10.3390/w13152091
23.
Kodura
,
A.
,
Stefanek
,
P.
, and
Weinerowska-Bords
,
K.
,
2017
, “
An Experimental and Numerical Analysis of Water Hammer Phenomenon in Slurries
,”
ASME J. Fluids Eng.
,
139
(
12
), p. 121301.10.1115/1.4037678
24.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
, “
Fluid Transients in Systems
,”
Prentice Hall
,
Englewood Cliffs, NJ
.
25.
Han
,
W.
,
Dong
,
Z.
, and
Chai
,
H. E.
,
1998
, “
Water Hammer in Pipelines With Hyperconcentrated Slurry Flows Carrying Solid Particles
,”
Sci. China Ser. E: Technol. Sci.
,
41
(
4
), pp.
337
347
.10.1007/BF02917005
26.
Inaba
,
K.
,
Takahashi
,
H.
,
Kurokawa
,
Y.
, and
Kishimoto
,
K.
,
2012
, “
Wavelet Analysis of Flexural Wave Fronts in Water/Slurry Hammer
,”
ASME
Paper No. PVP2012-78505.10.1115/PVP2012-78505
27.
Lan
,
G.
,
Jiang
,
J.
,
Li
,
D. D.
,
Yi
,
W. S.
,
Zhao
,
Z.
, and
Nie
,
L. N.
,
2013
, “
Research on Numerical Simulation and Protection of Transient Process in Long-Distance Slurry Transportation Pipelines
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
(
7
), p.
072008
.10.1088/1757-899X/52/7/072008
28.
Kodura
,
A.
,
Weinerowska-Bords
,
K.
,
Artichowicz
,
W.
,
Kubrak
,
M.
, and
Stefanek
,
P.
,
2019
, “
In Situ Verification of Numerical Model of Water Hammer in Slurries
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081115
. 10.1115/1.4042959
29.
He
,
L.
,
Duan
,
J. G.
,
Wang
,
G.
, and
Fu
,
X.
,
2012
, “
Numerical Simulation of Unsteady Hyperconcentrated Sediment-Laden Flow in the Yellow River
,”
J. Hydraulic Eng.
,
138
(
11
), pp.
958
969
.10.1061/(ASCE)HY.1943-7900.0000599
30.
Fei
,
X.
, and
Wu
,
B.
,
2015
, “
Basic Characteristics and Sediment Transport Capacity of Hyper Concentrated Flow of Lower Yellow River
,”
Water Resour. Hydropower Eng. (Chin.)
,
46
(
6
), pp.
59
66
.
31.
Newitt
,
D. M.
,
Richardson
,
J. F.
, and
Abbott
,
M.
,
1955
, “
Hydraulic Conveying of Solids in Horizontal Pipes
,”
Trans. Inst. Chem. Eng
,
33
(
2
), pp.
93
113
.
32.
Zandi
,
I.
, and
Govatos
,
G.
,
1967
, “
Heterogeneous Flow of Solids in Pipe-Lines
,”
J. Hydraulic Eng.
,
93
(
3
), pp.
145
159
.10.1061/JYCEAJ.0001608
33.
Durand
,
R.
,
1953
, “
Basic Relationships of the Trnsportation of Solids in Pipes-Experimental Research
,”
The International Association for Hydro-Environment Engineering and Research, 5th Congrress
,
Minneapolis, MN
.https://www.scinapse.io/papers/2343102232
34.
Rubey
,
W.
,
1933
, “
Settling Velocity of Gravel, Sand, and Silt Particles
,”
Am. J. Sci.
,
s5-25
(
148
), pp.
325
338
.10.2475/ajs.s5-25.148.325
35.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2004
, “
Godunov-Type Solutions for Water Hammer Flows
,”
J. Hydraulic Eng.
,
130
(
4
), pp.
341
348
.10.1061/(ASCE)0733-9429(2004)130:4(341)
36.
Afshar
,
M. H.
, and
Rohani
,
M.
,
2008
, “
Water Hammer Simulation by Implicit Method of Characteristic
,”
Int. J. Pressure Vessels Piping
,
85
(
12
), pp.
851
859
.10.1016/j.ijpvp.2008.08.006
37.
Pan
,
T.
,
Zhou
,
L.
,
Ou
,
C.
,
Wang
,
P.
, and
Liu
,
D.
,
2022
, “
Smoothed Particle Hydrodynamics With Unsteady Friction Model for Water Hammer Pipe Flow
,”
J. Hydraulic Eng.
,
148
(
2
), p.
04021057
.10.1061/(ASCE)HY.1943-7900.0001966
38.
Wan
,
W.
, and
Huang
,
W.
,
2018
, “
Water Hammer Simulation of a Series Pipe System Using the MacCormack Time Marching Scheme
,”
Acta Mech.
,
229
(
7
), pp.
3143
3160
.10.1007/s00707-018-2179-2
39.
Marchal
,
M.
,
Flesch
,
G.
, and
Suter
,
P.
,
1965
, “
The Calculation of Waterhammer Problems by Means of the Digital Computer
,”
Proceedings of Internaional Symposium on Waterhammer Pumped Storage Projects ASME
, Chicago, IL, Nov. 7–11, pp.
168
180
.
You do not currently have access to this content.