Abstract

This study investigates the effect of the defect width on the burst capacity of corroded pipelines repaired with fiber reinforced polymer composite. Parametric finite element analyses are carried out to evaluate the burst capacities of composite-repaired pipes containing localized and full-circumferential corrosion defects. The analysis results indicate that burst capacities of composite-repaired pipes containing localized defects can be markedly lower than those of composite-repaired pipes with full-circumferential defects. The burst capacity model derived from the design equation recommended in the ASME PCC-2 code is found to be nonconservative for composite-repaired pipes with localized defects based on the parametric finite element analyses. An empirical equation for the defect width correction factor is then developed and shown to be highly effective in improving the predictive accuracy of the PCC-2 burst capacity model.

References

1.
Alabtah
,
F. G.
,
Mahdi
,
E.
, and
Eliyan
,
F. F.
,
2021
, “
The Use of Fibre Reinforced Polymeric Composites in Pipelines: A Review
,”
Compos. Struct.
,
276
, p.
114595
.10.1016/j.compstruct.2021.114595
2.
Lim
,
K. S.
,
Azraai
,
S. N. A.
,
Yahaya
,
N.
,
Noor
,
N. M.
,
Zardasti
,
L.
, and
Kim
,
J. H. J.
,
2019
, “
Behaviour of Steel Pipelines With Composite Repairs Analyzed Using Experimental and Numerical Approaches
,”
Thin-Walled Struct.
,
139
, pp.
321
333
.10.1016/j.tws.2019.03.023
3.
Duell
,
J. M.
,
Wilson
,
J. M.
, and
Kessler
,
M. R.
,
2008
, “
Analysis of a Carbon Composite Overwrap Pipeline Repair System
,”
Int. J. Pressure Vessels Piping
,
85
(
11
), pp.
782
788
.10.1016/j.ijpvp.2008.08.001
4.
ASME,
2018
, “
Repair of Pressure Equipment and Piping: An American National Standard
,”
ASME
,
New York
, Standard No. ASME PCC-2-2018.
5.
International Standard Organization
,
2017
, “
ISO-24817 Petroleum, Petrochemical and Natural Gas Industries: Composite Repairs for Pipework: Qualification and Design, Installation, Testing and Inspection
,”
ISO
, Geneva, Switzerland.
6.
da Costa Mattos
,
H. S.
,
Reis
,
J. M. L.
,
Paim
,
L. M.
,
da Silva
,
M. L.
,
Amorim
,
F. C.
, and
Perrut
,
V. A.
,
2014
, “
Analysis of a Glass Fibre Reinforced Polyurethane Composite Repair System for Corroded Pipelines at Elevated Temperatures
,”
Compos. Struct.
,
114
, pp.
117
123
.10.1016/j.compstruct.2014.04.015
7.
Chan
,
P. H.
,
Tshai
,
K. Y.
,
Johnson
,
M.
,
Choo
,
L. H.
,
Li
,
S.
, and
Zakaria
,
K.
,
2015
, “
Burst Strength of Carbon Fibre Reinforced Polyethylene Strip Pipeline Repair System—A Numerical and Experimental Approach
,”
J. Compos. Mater.
,
49
(
6
), pp.
749
756
.10.1177/0021998314525652
8.
Akram
,
A.
,
Mustaffa
,
Z.
, and
Albarody
,
T. M. B.
,
2020
, “
Burst Capacity of Pipe Under Corrosion Defects and Repaired With Thermosetting Liner
,”
Steel Compos. Struct.
,
35
(
2
), pp.
171
186
.10.12989/scs.2020.35.2.171
9.
Chen
,
J.
,
Wang
,
H.
,
Salemi
,
M.
, and
Balaguru
,
P. N.
,
2021
, “
Finite Element Analysis of Composite Repair for Damaged Steel Pipeline
,”
Coatings
,
11
(
3
), p.
301
.10.3390/coatings11030301
10.
Kong
,
D.
,
Huang
,
X.
,
Xin
,
M.
, and
Xian
,
G.
,
2020
, “
Effects of Defect Dimensions and Putty Properties on the Burst Performances of Steel Pipes Wrapped With CFRP Composites
,”
Int. J. Pressure Vessels Piping
,
186
, p.
104139
.10.1016/j.ijpvp.2020.104139
11.
Zhou
,
W.
, and
Huang
,
G. X.
,
2012
, “
Model Error Assessments of Burst Capacity Models for Corroded Pipelines
,”
Int. J. Pressure Vessels Piping
,
99–100
, pp.
1
8
.10.1016/j.ijpvp.2012.06.001
12.
Zhang
,
S.
, and
Zhou
,
W.
,
2020
, “
Assessment of Effects of Idealized Defect Shape and Width on the Burst Capacity of Corroded Pipelines
,”
Thin-Walled Struct.
,
154
, p.
106806
.10.1016/j.tws.2020.106806
13.
Meniconi
,
L. C.
,
Freire
,
J. L.
,
Vieira
,
R. D.
, and
Diniz
,
J. L.
,
2002
, “
Stress Analysis of Pipelines With Composite Repairs
,”
ASME
Paper No. IPC2002-27372. 10.1115/IPC2002-27372
14.
Al Abtah
,
F. G.
,
Mahdi
,
E.
, and
Gowid
,
S.
,
2020
, “
The Use of Composite to Eliminate the Effect of Welding on the Bending Behaviour of Metallic Pipes
,”
Compos. Struct.
,
235
, p.
111793
.10.1016/j.compstruct.2019.111793
15.
Her
,
R.
,
Renard
,
J.
,
Gaffard
,
V.
,
Favry
,
Y.
, and
Wiet
,
P.
,
2014
, “
Design of Pipeline Composite Repairs: From Lab Scale Tests to FEA and Full-Scale Testing
,”
ASME
Paper No. IPC2014-33201. 10.1115/IPC2014-33201
16.
Mazurkiewicz
,
L.
,
Tomaszewski
,
M.
,
Malachowski
,
J.
,
Sybilski
,
K.
,
Chebakov
,
M.
,
Witek
,
M.
,
Yukhymets
,
P.
, and
Dmitrienko
,
R.
,
2017
, “
Experimental and Numerical Study of Steel Pipe With Part-Wall Defect Reinforced With Fibre Glass Sleeve
,”
Int. J. Pressure Vessels Piping
,
149
, pp.
108
119
.10.1016/j.ijpvp.2016.12.008
17.
Ahankari
,
S.
, and
Patil
,
A.
,
2020
, “
Sea Water Effect on Mechanical Performance of Steel Pipes Rehabilitated With Glass Fiber Reinforced Epoxy Composites
,”
Mater. Today: Proc.
,
22
, pp.
2490
2498
.10.1016/j.matpr.2020.03.377
18.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2005
, “
Influence of the Yield-to-Tensile Strength Ratio on Failure Assessment of Corroded Pipelines
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
436
442
.10.1115/1.2042481
19.
Dowling
,
N. E.
,
2007
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue
, 3rd ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
20.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
329
334
.10.1115/1.3153664
21.
Ferreira
,
R. T.
, and
Ashcroft
,
I. A.
,
2020
, “
Optimal Orientation of Fiber Composites for Strength Based on Hashin's Criteria Optimality Conditions
,”
Struct. Multidiscip. Optim.
,
61
(
5
), pp.
2155
2176
.10.1007/s00158-019-02462-w
You do not currently have access to this content.