Abstract

Utilizing existing natural gas pipelines to transport hydrogen-blended natural gas is a primary strategy for achieving cost-effective, long-distance, and large-scale hydrogen transportation. However, blending hydrogen with natural gas alters its physical properties, resulting in changes in leakage and diffusion characteristics and the affected range. To illustrate this, we focus on the Jingxi Third Line natural gas long-distance pipeline and develop a buried hydrogen blended natural gas pipeline model to analyze the concentration distribution of hydrogen-blended natural gas and the temporal variation of gas velocity at the leakage point. We explore the influence of various factors, including pressure, leak orifice size, wind speed, and hydrogen-blending ratio, on the diffusion range of hydrogen-blended natural gas. The research findings demonstrate that in the vicinity of the leakage point, the methane concentration significantly exceeds the upper explosive limit while the hydrogen concentration remains within the explosive limit range. The hazardous range of hydrogen-blended natural gas leakage and diffusion is slightly larger than that of natural gas alone. Furthermore, both the vertical and horizontal hazardous ranges of hydrogen-blended natural gas leakage and diffusion exhibit positive correlations with pressure and leak orifice size. Additionally, as wind speed increases, the maximum impact distance in the vertical direction gradually decreases, while it gradually increases in the horizontal direction.

References

1.
Administration, N. E.
,
2020
, “
Transcript of National Energy Administration's Online Press Conference in the First Quarter of 2020
,” National Energy Administration, Beijing, China, accessed Aug. 2023, http://www.nea.gov.cn/2020-03/06/c_138850234.htm
2.
Jin
,
X.
,
Zhuang
,
Y.
, and
Wang
,
H.
,
2019
, “
Feasibility Analysis Research on Abandoning Wind and Solar Energy With Hydrogen Energy Storage Technology
,”
Electrotechnics Electr.
, 39(
4
), pp.
63
68
.
3.
Deymi-Dashtebayaz
,
M.
,
Ebrahimi-Moghadam
,
A.
,
Pishbin
,
S. I.
, and
Pourramezan
,
M.
,
2019
, “
Investigating the Effect of Hydrogen Injection on Natural Gas Thermo-Physical Properties With Various Compositions
,”
Energy
,
167
, pp.
235
245
.10.1016/j.energy.2018.10.186
4.
Yıldırım
,
A.
,
2011
, “
NATURALHY (The Potential of Existing Natural Gas Network for Hydrogen Delivery) Project Objectives and Some Results
,”
Proceedings of the 18th International Petroleum and Natural Gas Congress and Exhibition of Turkey
, Ankara, Turkey, May 11–13, p.
cp-377
.10.3997/2214-4609-PDB.377.155
5.
Anonymous
,
2014
, “
GRHYD Project to Demo Solid-State H2 Storage
,”
Mod. Power Syst.
,
34
(
2
), p.
39
.
6.
Patel
,
S.
,
2020
, “
WindGas Falkenhagen: Pioneering ‘Green’ Gas Production
,”
Power
,
164
(
9
), pp.
30
31
.
7.
Farzadi
,
A.
,
2015
, “
Gas Pipeline Failure Caused by In-Service Welding
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011405
.10.1115/1.4031443
8.
Zheng
,
J.
,
Li
,
L.
,
Chen
,
R.
,
Xu
,
P.
, and
Kai
,
F.
,
2008
, “
High Pressure Steel Storage Vessels Used in Hydrogen Refueling Station
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
014503
.10.1115/1.2826453
9.
Xie
,
P.
,
Wu
,
Y.
,
Li
,
C.
, and
Jia
,
W.
,
2021
, “
Research Progress on Pipeline Transportation Technology of Hydrogen-Mixed Natural Gas
,”
Oil Gas Storage Transp.
,
40
(
4
), pp.
361
370
.
10.
Li
,
J.
,
Su
,
Y.
,
Zhang
,
H.
, and
Yu
,
B.
,
2021
, “
Research Progresses on Pipeline Transportation of Hydrogen-Blended Natural Gas
,”
Nat. Gas Ind.
,
41
(
4
), pp.
137
152
.
11.
Shang
,
J.
,
Lu
,
Y.
,
Zheng
,
J.
, and
Sun
,
C.
,
2021
, “
Research Status-In-Situ and Key Challenges in Pipeline Transportation of Hydrogen-Natural Gas Mixtures
,”
Chem. Ind. Eng. Prog.
,
40
(
10
), pp.
5499
5505
.10.16085/j.issn.1000-6613.2020-2140
12.
Slifka
,
A. J.
,
Drexler
,
E. S.
,
Amaro
,
R. L.
,
Hayden
,
L. E.
,
Stalheim
,
D. G.
,
Lauria
,
D. S.
, and
Hrabe
,
N. W.
,
2017
, “
Fatigue Measurement of Pipeline Steels for the Application of Transporting Gaseous Hydrogen
,”
ASME J. Pressure Vessel Technol.
,
140
(
1
), p.
011407
.10.1115/1.4038594
13.
Yamabe
,
J.
,
Itoga
,
H.
,
Awane
,
T.
,
Matsuo
,
T.
,
Matsunaga
,
H.
, and
Matsuoka
,
S.
,
2015
, “
Pressure Cycle Testing of Cr–Mo Steel Pressure Vessels Subjected to Gaseous Hydrogen
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011401
.10.1115/1.4030086
14.
Somerday
,
B. P.
, and
Barney
,
M.
,
2015
, “
Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p.
021406
.10.1115/1.4028349
15.
Liang
,
J.
,
Li
,
Y.
,
Liu
,
C.
, and
Zhu
,
J.
,
2019
, “
Experimental Study on Leakage Characteristics of Buried Gas Pipelines
,”
CIESC J.
,
70
(
4
), pp.
1635
1643
.10.11949/j.issn.0438-1157.20180944
16.
Alberta
,
E. R.
,
2020
, “
Fort Saskatchewan Hydrogen Blending Project
,” ATCO, Calgary, AB, Canada, accessed Aug. 2023, https://gas.atco.com/en-ca/community/projects/fort-saskatchewan-hydrogen-blending-project.html
17.
Olvera
,
H. A.
, and
Choudhuri
,
A. R.
,
2006
, “
Numerical Simulation of Hydrogen Dispersion in the Vicinity of a Cubical Building in Stable Stratified Atmospheres
,”
Int. J. Hydrogen Energy
,
31
(
15
), pp.
2356
2369
.10.1016/j.ijhydene.2006.02.022
18.
Rigas
,
F.
, and
Sklavounos
,
S.
,
2005
, “
Evaluation of Hazards Associated With Hydrogen Storage Facilities
,”
Int. J. Hydrogen Energy
,
30
(
13–14
), pp.
1501
1510
.10.1016/j.ijhydene.2005.06.004
19.
Rosyid
,
O. A.
,
Jablonski
,
D.
, and
Hauptmanns
,
U.
,
2007
, “
Risk Analysis for the Infrastructure of a Hydrogen Economy
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3194
3200
.10.1016/j.ijhydene.2007.02.012
20.
Wilkening
,
H.
, and
Baraldi
,
D.
,
2007
, “
CFD Modelling of Accidental Hydrogen Release From Pipelines
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
2206
2215
.10.1016/j.ijhydene.2007.04.022
21.
Su
,
Y.
,
Li
,
J.
,
Yu
,
B.
, and
Zhao
,
Y.
,
2022
, “
Numerical Investigation on the Leakage and Diffusion Characteristics of Hydrogen-Blended Natural Gas in a Domestic Kitchen
,”
Renewable Energy
,
189
, pp.
899
916
.10.1016/j.renene.2022.03.038
22.
Liu
,
Y.
,
Xu
,
P.
,
Zheng
,
J.
, and
Zhao
,
Y.
,
2008
, “
Numerical Simulation on the Dispersion of Hydrogen and Natural Gas Due to High Pressured Pipeline Leakage
,”
Acta Energ. Sol. Sin.
,
29
(
10
), pp.
1252
1255
.
23.
Zhao
,
B.
,
Zhu
,
M.
,
Peng
,
Y.
, and
Wang
,
M.
,
2017
, “
Simulation of Leakage From Hydrogen and Natural Gas Pipelines Based on PHAST
,”
Petrochem. Ind. Technol.
,
24
(
5
), pp.
48
50
.
24.
Li
,
H.
,
Cao
,
X.
,
Du
,
H.
,
Teng
,
L.
,
Shao
,
Y.
, and
Bian
,
J.
,
2022
, “
Numerical Simulation of Leakage and Diffusion Distribution of Natural Gas and Hydrogen Mixtures in a Closed Container
,”
Int. J. Hydrogen Energy
,
47
(
84
), pp.
35928
35939
.10.1016/j.ijhydene.2022.08.142
25.
Jia
,
W.
,
Wen
,
C.
,
Yang
,
M.
, and
Huang
,
J.
,
2021
, “
Study on Leakage and Diffusion of Hydrogen Mixed Natural Gas in the Valve Chamber
,”
Pet. New Energy
,
33
(
6
), pp.
75
82
.
26.
Lowesmith
,
B. J.
,
Hankinson
,
G.
,
Spataru
,
C.
, and
Stobbart
,
M.
,
2009
, “
Gas Build-Up in a Domestic Property Following Releases of Methane/Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
34
(
14
), pp.
5932
5939
.10.1016/j.ijhydene.2009.01.060
27.
Tiekstra
,
G.
, and
Koopman
,
F.
,
2008
, “
The NATURALHY Project: First Step in Assessing the Potential of the Existing Natural Gas Network for Hydrogen Delivery
,”
IGRC
,
Paris, France
.
28.
Melaina
,
M. W.
,
Antonia
,
O.
, and
Penev
,
M.
,
2013
, “
Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues
,”
National Renewable Energy Laboratory
, Golden, CO.
29.
Hormaza Mejia
,
A.
,
Brouwer
,
J.
, and
Mac Kinnon
,
M.
,
2020
, “
Hydrogen Leaks at the Same Rate as Natural Gas in Typical Low-Pressure Gas Infrastructure
,”
Int. J. Hydrogen Energy
,
45
(
15
), pp.
8810
8826
.10.1016/j.ijhydene.2019.12.159
30.
Zhu
,
J.
,
Pan
,
J.
,
Zhang
,
Y.
,
Li
,
Y.
,
Li
,
H.
,
Feng
,
H.
,
Chen
,
D.
,
Kou
,
Y.
, and
Yang
,
R.
,
2023
, “
Leakage and Diffusion Behavior of a Buried Pipeline of Hydrogen-Blended Natural Gas
,”
Int. J. Hydrogen Energy
,
48
(
30
), pp.
11592
11610
.10.1016/j.ijhydene.2022.10.185
31.
Drexler
,
E. S.
,
Amaro
,
R. L.
,
Slifka
,
A. J.
,
Bradley
,
P. E.
, and
Lauria
,
D. S.
,
2018
, “
Operating Hydrogen Gas Transmission Pipelines at Pressures Above 21 MPa
,”
ASME J. Pressure Vessel Technol.
,
140
(
6
), p.
061702
.10.1115/1.4041689
32.
Amaro
,
R. L.
,
White
,
R. M.
,
Looney
,
C. P.
,
Drexler
,
E. S.
, and
Slifka
,
A. J.
,
2018
, “
Development of a Model for Hydrogen-Assisted Fatigue Crack Growth of Pipeline Steel
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p.
021403
.10.1115/1.4038824
33.
Ebrahimi-Moghadam
,
A.
,
Farzaneh-Gord
,
M.
, and
Deymi-Dashtebayaz
,
M.
,
2016
, “
Correlations for Estimating Natural Gas Leakage From Above-Ground and Buried Urban Distribution Pipelines
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
185
196
.10.1016/j.jngse.2016.06.062
34.
Yu
,
Q.
,
Hou
,
L.
,
Li
,
Y.
,
Chai
,
C.
,
Liu
,
J.
, and
Yang
,
K.
,
2022
, “
Numerical Study on Harmful Boundary of Above-Ground Section Leakage of Natural Gas Pipeline
,”
J. Loss Prev. Process Ind.
,
80
, p.
104901
.10.1016/j.jlp.2022.104901
35.
Ebrahimi-Moghadam
,
A.
,
Farzaneh-Gord
,
M.
,
Arabkoohsar
,
A.
, and
Moghadam
,
A. J.
,
2018
, “
CFD Analysis of Natural Gas Emission From Damaged Pipelines: Correlation Development for Leakage Estimation
,”
J. Cleaner Prod.
,
199
, pp.
257
271
.10.1016/j.jclepro.2018.07.127
36.
Cheng
,
Y.
,
Lien
,
F. S.
,
Yee
,
E.
, and
Sinclair
,
R.
,
2003
, “
A Comparison of Large Eddy Simulations With a Standard k–ε Reynolds-Averaged Navier–Stokes Model for the Prediction of a Fully Developed Turbulent Flow Over a Matrix of Cubes
,”
J. Wind Eng. Ind. Aerodyn.
,
91
(
11
), pp.
1301
1328
.10.1016/j.jweia.2003.08.001
37.
Bagheri
,
M.
, and
Sari
,
A.
,
2022
, “
Study of Natural Gas Emission From a Hole on Underground Pipelines Using Optimal Design-Based CFD Simulations: Developing Comprehensive Soil Classified Leakage Models
,”
J. Nat. Gas Sci. Eng.
,
102
, p.
104583
.10.1016/j.jngse.2022.104583
38.
Choi
,
S.-K.
, and
Kim
,
S.-O.
,
2012
, “
Turbulence Modeling of Natural Convection in Enclosures: A Review
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
283
297
.10.1007/s12206-011-1037-0
You do not currently have access to this content.