Abstract

The properties inhomogeneity of steel plates will result in uncertainty of forming quality of large diameter UOE oil pipes and increase the risk of pipeline failure. In this paper, a robust design method for UOE forming process based on support vector machine and sequential response surface modeling and considering the variation of steel plates′ properties is proposed. A hundred of mechanical experiments are first carried out and the variation of X80 steel's properties is statistically evaluated. The varied properties are assigned to partitioned steel segments and taken as the noise factor in process design. The ovality of the UOE pipe is employed as the optimization objective, and the forming quality indicators including convex amount, mean outside diameter, yield strengths and Ys/Uts7, O-forming gap, the width of the U-shaped plate, inclined angle of straight arm of the U-shaped plate, etc., are taken as the constraints. Based on the semi-analytical computation of C-, U- and O-forming processes and finite element simulation of expanding process, a sequential response surface model is established by using the support vector machine method. Finally, a Monte Carlo sampling is performed to demonstrate the effectiveness of the proposed method. Compared to conventional optimization method, the robust optimization performs obviously better in reducing the ovality and increasing the robustness of UOE forming process.

References

1.
Bagheri
,
M.
,
Zhu
,
S.
,
Seghier
,
M. E. A. B.
,
Keshtegar
,
B.
, and
Trung
,
N. T.
,
2021
, “
Hybrid Intelligent Method for Fuzzy Reliability Analysis of Corroded X100 Steel Pipelines
,”
Eng. Comput.
,
37
(
4
), pp.
2559
2573
.10.1007/s00366-020-00969-1
2.
Madhav
,
V.
,
Krishnaswamy
,
H.
, and
Majumdar
,
S.
,
2020
, “
Analysis of UOE Forming Process Accounting for Bauschinger Effect and Welding
,”
Mater. Manuf. Processes
,
35
(
8
), pp.
910
921
.10.1080/10426914.2020.1745230
3.
Herynk
,
M. D.
,
Kyriakides
,
S.
,
Onoufriou
,
A.
, and
Yun
,
H. D.
,
2007
, “
Effects of the UOE/UOC Pipe Manufacturing Processes on Pipe Collapse Pressure
,”
Int. J. Mech. Sci.
,
49
(
5
), pp.
533
553
.10.1016/j.ijmecsci.2006.10.001
4.
Gresnigt
,
A. M.
,
Van Foeken
,
R. J.
, and
Chen
,
S.
,
2000
, “
Collapse of UOE Manufactured Steel Pipes
,”
The Tenth International Offshore and Polar Engineering Conference International Society of Offshore and Polar Engineers
, Seattle, WA, May 28–June 2, pp.
170
181
.https://onepetro.org/ISOPEIOPEC/proceedingsabstract/ISOPE00/All-ISOPE00/ISOPE-I-00-138/6789
5.
Chatzopoulou
,
G.
,
Karamanos
,
S. A.
, and
Varelis
,
G. E.
,
2016
, “
Finite Element Analysis of UOE Manufacturing Process and Its Effect on Mechanical Behavior of Offshore Pipes
,”
Int. J. Solids. Struct.
,
83
, pp.
13
27
.10.1016/j.ijsolstr.2015.12.020
6.
Roza
,
J. E.
,
Malatesta
,
G.
,
Fritz
,
M. C.
,
Mannucci
,
G.
,
Chad
,
L.
,
Ferino
,
J.
, and
Silva
,
R. C.
,
2008
, “
Numerical Simulation Analysis of High Strength UOE Steel Pipes
,”
ASME
Paper No. IPC2008-64387.10.1115/IPC2008-64387
7.
Palumbo
,
G.
, and
Tricarico
,
L.
,
2005
, “
Effect of Forming and Calibration Operations on the Final Shape of Large Diameter Welded Tubes
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1089
1098
.10.1016/j.jmatprotec.2005.02.150
8.
Ren
,
Q.
,
Zou
,
T.
,
Li
,
D.
,
Tang
,
D.
, and
Peng
,
Y.
,
2015
, “
Numerical Study on the X80 UOE Pipe Forming Process
,”
J. Mater. Process. Technol.
,
215
, pp.
264
277
.10.1016/j.jmatprotec.2014.08.013
9.
Zou
,
T.
,
Wu
,
G.
,
Li
,
D.
,
Ren
,
Q.
,
Xin
,
J.
, and
Peng
,
Y.
,
2015
, “
A Numerical Method for Predicting O-Forming Gap in UOE Pipe Manufacturing
,”
Int. J. Mech. Sci.
,
98
, pp.
39
58
.10.1016/j.ijmecsci.2015.04.006
10.
Zou
,
T.
,
Li
,
D.
,
Wu
,
G.
, and
Peng
,
Y.
,
2016
, “
Yield Strength Development From High Strength Steel Plate to UOE Pipe
,”
Mater. Des.
,
89
, pp.
1107
1122
.10.1016/j.matdes.2015.10.095
11.
Jiao
,
J.
,
Lu
,
C.
,
Lee
,
C. S.
,
Bae
,
J. H.
, and
Barbaro
,
F.
,
2020
, “
Introduction of the Delta Concept for Characterising Pipe Yield Strength
,”
Int. J. Mater. Form.
,
13
(
4
), pp.
623
637
.10.1007/s12289-019-01501-7
12.
Jiao
,
J.
,
Lu
,
C.
,
Linton
,
V.
, and
Barbaro
,
F.
,
2021
, “
The Effects of Operational, Testing, and Material Characterizations on the Change in Yield Strength From Plate to Pipe
,”
ASME J. Pressure Vessel Technol.
,
143
, p.
041504
.10.1115/1.4049986
13.
Moon
,
J.
,
Jeong
,
H. J.
,
Joo
,
S. H.
,
Sohn
,
S. S.
,
Kim
,
K. S.
,
Lee
,
S.
, and
Kim
,
H. S.
,
2018
, “
Simulation of Pipe-Manufacturing Processes Using Sheet Bending-Flattening
,”
Exp. Mech.
,
58
(
6
), pp.
909
918
.10.1007/s11340-018-0397-0
14.
Frunkin
,
D. B.
,
Gurevich
,
L. M.
,
Novikov
,
R. E.
,
Bannikov
,
A. I.
,
Serov
,
A. G.
, and
Dyatlov
,
N. A.
,
2018
, “
Welded Pipe Geometry Changing During the Expanding Process
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
450
, p.
032048
.10.1088/1757-899X/450/3/032048
15.
Yi
,
J.
,
Kang
,
S.
,
Park
,
W.
, and
Choo
,
J. F.
,
2019
, “
Yield Strength Tracking of UOE Pipe Considering Various Thickness-to-Diameter Ratios
,”
Mar. Struct.
,
68
, p.
102616
.10.1016/j.marstruc.2019.04.004
16.
Kim
,
D. W.
,
Kim
,
W. K.
,
Bae
,
J. H.
,
Choi
,
W. D.
,
Kim
,
H. S.
, and
Lee
,
S. H.
,
2019
, “
Yield-Strength Prediction of Flattened Steel Pipes by Competing Bauschinger Effect and Strain Hardening During Pipe-Forming
,”
Sci. Rep.
,
9
(
1
), p.
14002
.10.1038/s41598-019-50328-4
17.
Kim
,
D. W.
,
Kim
,
W. K.
,
Bae
,
J. H.
,
Choi
,
W. D.
,
Sohn
,
S. S.
, and
Lee
,
S. H.
,
2020
, “
Effects of Finish Rolling Temperature and Yield Ratio on Variations in Yield Strength After Pipe–Forming of API–X65 Line–Pipe Steels
,”
Sci. Rep.
,
10
(
1
), p.
14742
.10.1038/s41598-020-71729-w
18.
Kostryzhev
,
A. G.
,
Strangwood
,
M.
, and
Davis
,
C. L.
,
2007
, “
Influence of Microalloying Precipitate on Bauschinger Effect During UOE Forming of Line Pipe Steels
,”
Mater. Sci. Technol.
,
22
(
3
), pp.
166
172
.10.1179/175355507X236650
19.
Xu
,
X.
,
Zhao
,
X.
,
Ai
,
Y.
,
Liang
,
M.
,
Li
,
N.
,
Lin
,
W.
, and
Qin
,
C.
,
2020
, “
Study and Analysis on the Tensile Test Elongation Variation Law for High-Strength Pipeline Steel
,”
J. Mater. Eng. Perform.
,
29
(
4
), pp.
2164
2171
.10.1007/s11665-020-04665-5
20.
Bhardwaj
,
U.
,
Teixeira
,
A. P.
, and
Soares
,
C. G.
,
2020
, “
Uncertainty Quantification of Burst Pressure Models of Corroded Pipelines
,”
Int. J. Pressure Vessels Piping
,
188
, p.
104208
.10.1016/j.ijpvp.2020.104208
21.
Bhardwaj
,
U.
,
Teixeira
,
A. P.
, and
Soares
,
C. G.
,
2022
, “
Probabilistic Safety Assessment of the Burst Strength of Corroded Pipelines of Different Steel Grades With Calibrated Strength Models
,”
Mar. Struct.
,
86
, p.
103310
.10.1016/j.marstruc.2022.103310
22.
Seghier
,
M. E. A. B.
,
Keshtegar
,
B.
, and
Elahmoune
,
B.
,
2018
, “
Reliability Analysis of Low, Mid and High-Grade Strength Corroded Pipes Based on Plastic Flow Theory Using Adaptive Nonlinear Conjugate Map
,”
Eng. Failure Anal.
,
90
, pp.
245
261
.10.1016/j.engfailanal.2018.03.029
23.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Yiscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
24.
Yoshida
,
F.
,
Uemori
,
T.
, and
Fujiwara
,
K.
,
2002
, “
Elastic–Plastic Behavior of Steel Sheets Under in-Plane Cyclic Tension–Compression at Large Strain
,”
Int. J. Plast.
,
18
(
5–6
), pp.
633
659
.10.1016/S0749-6419(01)00049-3
25.
Vapnik
,
V. N.
,
1995
, “
The Nature of Statistical Learning Theory
,” Springer, Berlin.
26.
ANSI/API SPEC,
2012
, “
Specification for Line Pipe (FORTY-FIFTH EDITION; ERTA 1: April 2015)
,”
ANSI/API SPEC 5L-2012
.https://russiannorms.com/product/ansi-api-spec-5l-2012-pdf-specification-for-line-pipe-forty-fifth-edition-erta-1-april-2015/
You do not currently have access to this content.