Abstract

Failure risk assessment of pressure vessels and piping systems is an important part of their integrity management. Obviously, there are many shortcomings in risk analysis using only traditional procedures, which are mostly qualitative or conservative by nature. This study develops a novel limit analysis method using quantitative magnetic measurements to determine the failure risk of steel vessels. First, the correlation between the physico-mechanical properties of a pressurized steel cylinder and the magnetic coercive force was obtained by hydraulic tests, it is found that increasing internal pressure leads to an increase in the coercive force, and the magnetomechanical behavior can be described by a linear general expression. By solving the inverse problem, it is possible to diagnose the transition of the structure to the yield region or the fracture region based on the measurements of coercivity, which enables us to conduct the risk assessment prior to the failure of a pressurized cylinder, validated by a full-scale hydrostatic burst test. Finally, a quantitative criteria for identifying the structural failure of the pressurized cylinder was established based on coercivity measurements.

References

1.
Chang
,
J. I.
, and
Lin
,
C. C.
,
2006
, “
A Study of Storage Tank Accidents
,”
J. Loss Prev. Process Ind.
,
19
(
1
), pp.
51
59
.10.1016/j.jlp.2005.05.015
2.
Caprinozzi
,
S.
,
Paolacci
,
F.
, and
Dolšek
,
M.
,
2020
, “
Seismic Risk Assessment of Liquid Overtopping in a Steel Storage Tank Equipped With a Single Deck Floating Roof
,”
J. Loss Prev. Process Ind.
,
67
, p.
104269
.10.1016/j.jlp.2020.104269
3.
Kidam
,
K.
, and
Hurme
,
M.
,
2013
, “
Analysis of Equipment Failures as Contributors to Chemical Process Accidents
,”
Process Safety Environ. Prot.
,
91
(
1–2
), pp.
61
78
.10.1016/j.psep.2012.02.001
4.
Khan
,
F. I.
, and
Abbasi
,
S. A.
,
1999
, “
Major Accidents in Process Industries and an Analysis of Causes and Consequences
,”
J. Loss Prev. Process Ind.
,
12
(
5
), pp.
361
378
.10.1016/S0950-4230(98)00062-X
5.
Caprinozzi
,
S.
,
Žižmond
,
J.
, and
Dolšek
,
M.
,
2022
, “
Risk-Targeted Seismic Design of the Freeboard for Steel Storage Tanks Equipped With Floating Roofs
,”
Bull. Earthquake Eng.
, pp.
1
24
.10.1007/s10518-022-01564-z
6.
Christopher
,
T.
,
Sarma
,
B. S. V.
,
Potti
,
P. K.
,
Rao
,
B. N.
, and
Sankarnarayanasamy
,
K.
,
2002
, “
A Comparative Study on Failure Pressure Estimations of Unflawed Cylindrical Vessels
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
53
66
.10.1016/S0308-0161(01)00126-0
7.
Staat
,
M.
, and
Vu
,
D. K.
,
2013
, “
Limit Analysis of Flaws in Pressurized Pipes and Cylindrical Vessels. Part II: Circumferential Defects
,”
Eng. Fract. Mech.
,
97
, pp.
314
333
.10.1016/j.engfracmech.2012.05.017
8.
Valis
,
D.
, and
Koucky
,
M.
,
2009
, “
Selected Overview of Risk Assessment Techniques
,”
Problemy Eksploatacji
, (
4
), pp.
19
32
.https://bibliotekanauki.pl/articles/257653.pdf
9.
Mechhoud
,
E. A.
,
Rouainia
,
M.
, and
Rodriguez
,
M.
,
2016
, “
A New Tool for Risk Analysis and Assessment in Petrochemical Plants
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2919
2931
.10.1016/j.aej.2016.05.013
10.
Mazumder
,
R. K.
,
Salman
,
A. M.
, and
Li
,
Y.
,
2021
, “
Failure Risk Analysis of Pipelines Using Data-Driven Machine Learning Algorithms
,”
Struct. Safety
,
89
, p.
102047
.10.1016/j.strusafe.2020.102047
11.
Cioclov
,
D. D.
,
2013
, “
How Simulation of Failure Risk Can Improve Structural reliability-Application to Pressurized Components and Pipes
,”
New Trends in Smart Technologies
,
Fraunhofer Verlag
,
Stuttgart, Germany
.
12.
Wassink
,
C.
,
Grenier
,
M.
,
Roy
,
O.
, and
Pearson
,
N.
,
2020
, “
Deployment of Digital NDT Solutions in the Oil and Gas Industry
,”
Mater. Eval.
,
78
(
7
), pp.
861
868
.10.32548/2020.me-04138
13.
Jiles
,
D. C.
,
1990
, “
Review of Magnetic Methods for Nondestructive Evaluation (Part 2)
,”
NDT Int.
,
23
(
2
), pp.
83
92
.10.1016/0963-8695(90)91003-7
14.
Wang
,
Z. D.
,
Gu
,
Y.
, and
Wang
,
Y. S.
,
2012
, “
A Review of Three Magnetic NDT Technologies
,”
J. Magn. Magn. Mater.
,
324
(
4
), pp.
382
388
.10.1016/j.jmmm.2011.08.048
15.
Tyutin
,
M. R.
,
Botvina
,
L. R.
,
Levin
,
V. P.
,
Efimov
,
A. G.
, and
Kuzelev
,
N. R.
,
2018
, “
Study of the Mechanical Properties of Structural Steels Using Acoustic and Magnetic Methods
,”
Inorg. Mater.
,
54
(
15
), pp.
1551
1555
.10.1134/S0020168518150189
16.
Gopkalo
,
O.
,
Bezlyudko
,
G.
,
Nekhotiashchiy
,
V.
,
Gopkalo
,
O.
, and
Kurash
,
Y.
,
2020
, “
Damage Evaluation for AISI 304 Steel Under Cyclic Loading Based on Coercive Force Measurements
,”
Int. J. Fatigue
,
139
, p.
105752
.10.1016/j.ijfatigue.2020.105752
17.
Sudharsanam
,
V.
,
Senthilkumar
,
V.
,
Raju
,
N.
, and
Vetriselvan
,
R.
,
2015
, “
Evaluation of Post Weld Heat Treatment Quality of Modified 9Cr-1Mo (p91) Steel Weld by Magnetic Coercive Force Measurements
,”
Arch. Civ. Mech. Eng.
,
15
(
4
), pp.
847
853
.10.1016/j.acme.2015.05.006
18.
Shi
,
P. P.
,
Su
,
S. Q.
, and
Chen
,
Z. M.
,
2020
, “
Overview of Researches on the Nondestructive Testing Method of Metal Magnetic Memory: Status and Challenges
,”
J. Nondestr. Eval.
,
39
(
2
), p.
43
.10.1007/s10921-020-00688-z
19.
Hu
,
B.
,
Liu
,
Y.
, and
Yu
,
R. Q.
,
2020
, “
Numerical Simulation on Magnetic-Mechanical Behaviors of 304 Austenite Stainless Steel
,”
Measurement
,
151
, p.
107185
.10.1016/j.measurement.2019.107185
20.
Wang
,
X.
,
Chen
,
J. G.
,
Su
,
G.
,
Li
,
H. Y.
, and
Wang
,
C.
,
2020
, “
Plastic Damage Evolution in Structural Steel and Its Non-Destructive Evaluation
,”
J. Mater. Res. Technol.
,
9
(
2
), pp.
1189
1199
.10.1016/j.jmrt.2019.11.046
21.
Novikov
,
V. F.
,
Yatsenko
,
T. A.
, and
Bakharev
,
M. S.
,
2002
, “
Coercive Force as a Function of Uniaxial Stresses (Part 2)
,”
Russ. J. Nondestr. Test.
,
38
(
4
), pp.
231
237
.10.1023/A:1020901319055
22.
Novikov
,
V. F.
,
Yatsenko
,
T. A.
, and
Bakharev
,
M. S.
,
2001
, “
Coercive Force of Low-Carbon Steels as a Function of Uniaxial Stress. Part I
,”
Russ. J. Nondestr. Test.
,
37
, pp.
51
57
.10.1023/A:1015899320754
23.
Chai
,
J. H.
,
Lv
,
Z. J.
,
Shen
,
Z. X.
,
Zhang
,
Z. J.
,
Xu
,
B.
,
Shen
,
J. M.
,
Qian
,
S. J.
, and
Yang
,
F.
,
2022
, “
Magnetic Method for Evaluating Mechanical Properties of Steel Cylinders
,”
Mater. Eval.
,
80
(
8
), pp.
32
39
.10.32548/2022.me-04262
24.
Shen
,
Z. X.
,
Chen
,
H.
,
Huang
,
H. D.
,
Chai
,
J. H.
,
Niu
,
Y. P.
,
Wang
,
D.
, and
Zhang
,
Z. J.
,
2022
, “
A Method for Quickly Evaluating Heat Treatment Quality of 35CrMo Steel Cylinder Using Magnetic Properties
,”
J. Magn. Magn. Mater.
,
543
, p.
168622
.10.1016/j.jmmm.2021.168622
25.
Rodopoulos
,
D. C.
,
Gortsas
,
T. V.
,
Tsinopoulos
,
S. V.
, and
Polyzos
,
D.
,
2021
, “
Numerical Evaluation of Strain Gradients in Classical Elasticity Through the Boundary Element Method
,”
Eur. J. Mech.-A/Solids
,
86
, p.
104178
.10.1016/j.euromechsol.2020.104178
26.
Hossain
,
M. M.
,
2009
, “
Simplified Design and Integrity Assessment of Pressure Components and Structures
,”
Ph.D. dissertation
,
Memorial University of Newfoundland
,
St John's, LB, Canada
.https://research.library.mun.ca/10684/
27.
Jiles
,
D. C.
,
1994
, “
Modeling the Effects of Stress on Magnetization in Ferromagnetic Materials
,”
J. Appl. Phys.
,
75
(
10
), pp.
5676
5676
.10.1063/1.355634
28.
Gorkunov
,
E. S.
,
Zadvorkin
,
S. M.
,
Mushnikov
,
A. N.
,
Smirnov
,
S. V.
, and
Yakushenko
,
E. I.
,
2014
, “
Effect of Mechanical Stresses on the Magnetic Characteristics of Pipe Steel
,”
J. Appl. Mech. Tech. Phys.
,
55
(
3
), pp.
530
538
.10.1134/S002189441403016X
29.
Garikepati
,
P.
,
Chang
,
T. T.
, and
Jiles
,
D. C.
,
1988
, “
Theory of Ferromasnetic Hysteresis: Evaluation of Stress From Hysteresis Curves
,”
IEEE Trans. Magn.
,
24
(
6
), pp.
2922
2924
.10.1109/20.92289
30.
Kypris
,
O.
,
Nlebedim
,
I. C.
, and
Jiles
,
D. C.
,
2013
, “
Experimental Verification of the Linear Relationship Between Stress and the Reciprocal of the Peak Barkhausen Voltage in ASTM A36 Steel
,”
IEEE Trans. Magn.
,
49
(
7
), pp.
4148
4151
.10.1109/TMAG.2012.2234728
31.
Gorkunov
,
E. S.
,
Zadvorkin
,
S. M.
,
Smirnov
,
S. V.
,
Mitropol'skaya
,
Y. S.
, and
Vichuzhanin
,
D. I.
,
2007
, “
Correlation Between the Stress-Strain State Parameters and Magnetic Characteristics of Carbon Steels
,”
Phys. Met. Metallography
,
103
(
3
), pp.
311
316
.10.1134/S0031918X07030131
32.
Xu
,
L. Y.
,
Fan
,
J. S.
,
Yang
,
Y.
,
Tao
,
M. X.
, and
Tang
,
Z. Y.
,
2020
, “
An Improved Elasto-Plastic Constitutive Model for the Exquisite Description of Stress-Strain Hysteresis Loops With Cyclic Hardening and Softening Effects
,”
Mech. Mater.
,
150
, p.
103590
.10.1016/j.mechmat.2020.103590
33.
Jiles
,
D. C.
, and
Kiarie
,
W.
,
2021
, “
An Integrated Model of Magnetic Hysteresis, the Magnetomechanical Effect, and the Barkhausen Effect
,”
IEEE Trans. Magn.
,
57
(
2
), pp.
1
11
.10.1109/TMAG.2020.3034208
34.
Muzhitskii
,
V. F.
,
Popov
,
B. E.
, and
Bezlyud'k
,
G. Y.
,
2001
,
Magnetic Measurements Stressed-Strained States Remaining Service Lives Steel Structures Hoisting Machines Pressurized Vessels," Russ
.
J. Nondestr. Test.
,
37
, pp.
38
46
.10.1023/A:1016747217174
35.
Bannister
,
A. C.
,
Ocejo
,
J. R.
, and
Gutierrez-Solana
,
F.
,
2000
, “
Implications of the Yield Stress/Tensile Stress Ratio to the SINTAP Failure Assessment Diagrams for Homogeneous Materials
,”
Eng. Fract. Mech.
,
67
(
6
), pp.
547
562
.10.1016/S0013-7944(00)00073-4
36.
Kadam
,
M.
,
Gopalsamy
,
B.
,
Bujurke
,
A. A.
, and
Joshi
,
K. M.
,
2018
, “
Estimation of Static Burst Pressure in Unflawed High Pressure Cylinders Using Nonlinear FEA
,”
Thin-Walled Struct.
,
126
, pp.
79
84
.10.1016/j.tws.2017.05.022
37.
Law
,
M.
, and
Bowie
,
G.
,
2007
, “
Prediction of Failure Strain and Burst Pressure in High Yield-to-Tensile Strength Ratio Linepipe
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
487
492
.10.1016/j.ijpvp.2007.04.002
38.
Brabin
,
T. A.
,
Christopher
,
T.
, and
Rao
,
B. N.
,
2009
, “
Investigation on Failure Behavior of Unflawed Steel Cylindrical Pressure Vessels Using FEA
,”
Multidiscipline Model. Mater. Struct.
,
5
(
1
), pp.
29
42
.10.1108/15736105200900002
39.
Kisioglu
,
Y.
,
2011
, “
Burst Pressure Determination of Vehicle Toroidal Oval Cross-Section LPG Fuel Tanks
,”
ASME J. Pressure Vessel Technol.
,
133
(
3
), p.
031202
.10.1115/1.4002863
40.
Xue
,
L. P.
,
Widera
,
G. E. O.
, and
Sang
,
Z. F.
,
2008
, “
Burst Analysis of Cylindrical Shells
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
014502
.10.1115/1.2826454
41.
SÎanal
,
Z.
,
2000
, “
Nonlinear Analysis of Pressure Vessels: Some Examples
,”
Int. J. Pressure Vessels Piping
,
77
, pp.
705
709
.10.1016/S0308-0161(00)00081-8
42.
Ul'yanov
,
A. I.
,
Zakharov
,
V. A.
, and
Pospelova
,
I. G.
,
2015
, “
Coercive Force of Low-Carbon Steels During Elastic and Plastic Tensile Deformation
,”
Russ. Phys. J.
,
58
(
1
), pp.
85
91
.10.1007/s11182-015-0466-0
43.
Xie
,
Z.
,
Zhao
,
Y. S.
,
Bai
,
P. G.
,
Li
,
Q.
,
Pei
,
C. X.
,
Chen
,
H. G.
, and
Chen
,
Z. M.
,
2019
, “
Influence of Tensile Stress on Hysteresis Loop of Reduced Activation Ferrite & Martensitic Steel
,”
J. Nucl. Mater.
,
515
, pp.
28
34
.10.1016/j.jnucmat.2018.12.019
44.
Kidam
,
K.
,
Sahak
,
H. A.
,
Hassim
,
M. H.
,
Hashim
,
H.
, and
Hurme
,
M.
,
2015
, “
Method for Identifying Errors in Chemical Process Development and Design Base on Accidents Knowledge
,”
Process Saf. Environ. Prot.
,
97
, pp.
49
60
.10.1016/j.psep.2015.06.004
45.
Kurz
,
J. H.
,
Cioclov
,
D. D.
, and
Dobmann
,
G.
,
2007
, “
Quantitative Non-Destructive Testing: The Integration of Non-Destructive Testing and Probabilistic Fracture Mechanics
,”
Advances in Construction Materials
,
Springer
,
Berlin, Heidelberg
, pp.
583
590
.
46.
Milosevic
,
N.
,
Younise
,
B.
,
Sedmak
,
A.
,
Travica
,
M.
, and
Mitrovic
,
A.
,
2021
, “
Evaluation of True Stress–Strain Diagrams for Welded Joints by Application of Digital Image Correlation
,”
Eng. Failure Analysis
,
128
, p.
105609
.10.1016/j.engfailanal.2021.105609
47.
Morin
,
L.
,
Braham
,
C.
,
Tajdary
,
P.
,
Seddik
,
R.
, and
Gonzalez
,
G.
,
2021
, “
Reconstruction of Heterogeneous Surface Residual-Stresses in Metallic Materials From X-Ray Diffraction Measurements
,”
Mech. Mater.
,
158
, p.
103882
.10.1016/j.mechmat.2021.103882
48.
Pisarev
,
V.
,
Odintsev
,
I.
,
Eleonsky
,
S.
, and
Apalkov
,
A.
,
2018
, “
Residual Stress Determination by Optical Interferometric Measurements of Hole Diameter Increments
,”
Opt. Lasers Eng.
,
110
, pp.
437
456
.10.1016/j.optlaseng.2018.06.022
49.
Zhang
,
Q. L.
,
Yu
,
L.
,
Shang
,
X. F.
, and
Zhao
,
S.
,
2020
, “
Residual Stress Relief of Welded Aluminum Alloy Plate Using Ultrasonic Vibration
,”
Ultrasonics
,
107
, p.
106164
.10.1016/j.ultras.2020.106164
50.
Baruah
,
S.
,
Sarkar
,
S.
,
Singh
,
I. V.
, and
Mishra
,
B. K.
,
2022
, “
A Computational Framework Based on FEA, ML and GA for Estimation of Welding Residual Stresses
,”
Finite Elem. Anal. Des.
,
205
, p.
103753
.10.1016/j.finel.2022.103753
51.
Novikov
,
V. F.
,
Ustinov
,
V. P.
,
Radchenko
,
A. V.
,
Muratov
,
K. R.
,
Kulak
,
S. M.
, and
Sorokina
,
S. V.
,
2016
, “
On Controlling Stresses in a Complexly Loaded Steel Construction by Magnetoelastic Demagnetization
,”
Russ. J. Nondestr. Test.
,
52
(
6
), pp.
357
361
.10.1134/S1061830916060073
52.
Filinov
,
V. V.
,
Kuznetsov
,
A. N.
, and
Arakelov
,
P. G.
,
2017
, “
Monitoring Stressed State of Pipelines by Magnetic Parameters of Metal
,”
Russ. J. Nondestr. Test.
,
53
(
1
), pp.
51
61
.10.1134/S1061830917010065
You do not currently have access to this content.