Abstract

Although the thermal buckling problem of functionally gradient material (FGM) cylindrical shells has been investigated for many years, its theoretical solution is rarely reported when considering the material properties varying with temperature, and the existing commercial software also cannot directly solve the critical temperature rise of thermal buckling. Therefore, the theoretical solution of critical temperature rise was first derived for the FGM-coated cylindrical shell with temperature-dependent material properties based on the Donnell thin shell theory. And then, a stepped layer discrete finite element (FE) model was developed by integrating the bisection method into a user subroutine to calculate the critical temperature rise. The results show that the theoretical solutions are in good agreement with the numerical ones, and find out the temperature has a relatively large negative effect on the thermal buckling resistance of the FGM-coated cylindrical shell. Finally, the influence factors on the critical temperature rise were discussed in detail, and some suggestions have been formed to improve the calculation accuracy. This work not only provides a theoretical calculation formula but also develops an FE numerical method to calculate the critical temperature rise of the FGM-coated cylindrical shell, which will help the engineers to design the FGM-related structures easily.

References

1.
Faghih
,
S.
,
Jahed
,
H.
, and
Behravesh
,
B. S.
,
2018
, “
Variable Material Properties Approach: A Review on Twenty Years of Progress
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050803
.10.1115/1.4039068
2.
Shahsiah
,
R.
, and
Eslami
,
M. R.
,
2003
, “
Functionally Graded Cylindrical Shell Thermal Instability Based on Improved Donnell Equations
,”
AIAA J.
,
41
(
9
), pp.
1819
1826
.10.2514/2.7301
3.
Shariyat
,
M.
, and
Eslami
,
M. R.
,
2000
, “
On Thermal Dynamic Buckling Analysis of Imperfect Laminated Cylindrical Shells
,”
ZAMM‐J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
80
(
3
), pp.
171
182
.10.1002/(SICI)1521-4001(200003)80:3<171::AID-ZAMM171>3.0.CO;2-0
4.
Lanhe
,
W.
,
2004
, “
Thermal Buckling of a Simply Supported Moderately Thick Rectangular FGM Plate
,”
Compos. Struct.
,
64
(
2
), pp.
211
218
.10.1016/j.compstruct.2003.08.004
5.
Wu
,
L.
,
Jiang
,
Z.
, and
Liu
,
J.
,
2005
, “
Thermoelastic Stability of Functionally Graded Cylindrical Shells
,”
Compos. Struct.
,
70
(
1
), pp.
60
68
.10.1016/j.compstruct.2004.08.012
6.
Zenkour
,
A. M.
, and
Mashat
,
D. S.
,
2010
, “
Thermal Buckling Analysis of Ceramic-Metal Functionally Graded Plates
,”
Nat. Sci.
,
2
(
9
), pp.
968
978
.10.4236/ns.2010.29118
7.
Sabzikar
,
B. M.
, and
Eslami
,
M. R.
,
2014
, “
Axisymmetric Snap-Through Behavior of Piezo-FGM Shallow Clamped Spherical Shells Under Thermo-Electro-Mechanical Loading
,”
Int. J. Pressure Vessels Piping
,
120–121
, pp.
19
26
.10.1016/j.ijpvp.2014.03.008
8.
Dai
,
H. L.
,
Qi
,
L. L.
, and
Zheng
,
H. Y.
,
2014
, “
Buckling Analysis for a Ring-Stiffened FGM Cylindrical Shell Under Hydrostatic Pressure and Thermal Loads
,”
J. Mech.
,
30
(
4
), pp.
403
410
.10.1017/jmech.2014.34
9.
Boroujerdy
,
M. S.
, and
Eslami
,
M. R.
,
2015
, “
Unsymmetrical Buckling of Piezo-FGM Shallow Clamped Spherical Shells Under Thermal Loading
,”
J. Therm. Stresses
,
38
(
11
), pp.
1290
1307
.10.1080/01495739.2015.1073532
10.
Sun
,
J.
,
Xu
,
X.
,
Lim
,
C. W.
, and
Qiao
,
W.
,
2015
, “
Accurate Buckling Analysis for Shear Deformable FGM Cylindrical Shells Under Axial Compression and Thermal Loads
,”
Compos. Struct.
,
123
, pp.
246
256
.10.1016/j.compstruct.2014.12.030
11.
Vu
,
T. T. A.
,
Dao
,
H. B.
, and
Nguyen
,
D. D.
,
2015
, “
Nonlinear Stability Analysis of Thin FGM Annular Spherical Shells on Elastic Foundations Under External Pressure and Thermal Loads
,”
Eur. J. Mech. A/Solids
,
50
, pp.
28
38
.10.1016/j.euromechsol.2014.10.004
12.
Thom
,
V. D.
,
Duc
,
H. D.
, and
Tinh
,
Q. B.
,
2017
, “
Phase-Field Thermal Buckling Analysis for Cracked Functionally Graded Composite Plates Considering Neutral Surface
,”
Compos. Struct.
,
182
(
15
), pp.
542
548
.10.1016/j.compstruct.2017.09.059
13.
Sofiyev
,
A. H.
,
2018
, “
Review of Research on the Vibration and Buckling of the FGM Conical Shells
,”
Compos. Struct.
,
211
(
1
), pp.
301
317
.10.1016/j.compstruct.2018.12.047
14.
Long
,
V. T.
, and
Van
,
T. H.
,
2022
, “
Buckling Behavior of Thick Porous Functionally Graded Material Toroidal Shell Segments Under External Pressure and Elevated Temperature Including Tangential Edge Restraint
,”
ASME J. Pressure Vessel Technol.
,
144
(
5
), p.
051310
.10.1115/1.4053485
15.
Duc
,
N. D.
,
Seung-Eock
,
K.
, and
Chan
,
D. Q.
,
2018
, “
Thermal Buckling Analysis of FGM Sandwich Truncated Conical Shells Reinforced by FGM Stiffeners Resting on Elastic Foundations Using FSDT
,”
J. Therm. Stresses
,
41
, pp.
331
365
.10.1080/01495739.2017.1398623
16.
Sahoo
,
B.
,
Sahoo
,
B.
,
Sharma
,
N.
,
Mehar
,
K.
, and
Panda
,
S. K.
,
2020
, “
Numerical Buckling Temperature Prediction of Graded Sandwich Panel Using Higher Order Shear Deformation Theory Under Variable Temperature Loading
,”
Smart Struct. Syst.
,
26
, pp.
641
656
.10.12989/SSS.2020.26.5.641
17.
Chen
,
L. W.
, and
Chen
,
L. Y.
,
1989
, “
Thermal Buckling Behavior of Laminated Composite Plates With Temperature-Dependent Properties
,”
Compos. Struct.
,
13
(
4
), pp.
275
287
.10.1016/0263-8223(89)90012-3
18.
Yang
,
J.
,
Liew
,
K. M.
,
Wu
,
Y. F.
, and
Kitipornchai
,
S.
,
2006
, “
Thermo-Mechanical Post-Buckling of FGM Cylindrical Panels With Temperature-Dependent Properties
,”
Int. J. Solids Struct.
,
43
(
2
), pp.
307
324
.10.1016/j.ijsolstr.2005.04.001
19.
Kordkheili
,
S. H.
, and
Livani
,
M.
,
2013
, “
Thermoelastic Creep Analysis of a Functionally Graded Various Thickness Rotating Disk With Temperature-Dependent Material Properties
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
63
74
.10.1016/j.ijpvp.2013.05.001
20.
Duc
,
N. D.
, and
Quan
,
T. Q.
,
2014
, “
Transient Responses of Functionally Graded Double Curved Shallow Shells With Temperature-Dependent Material Properties in Thermal Environment
,”
Eur. J. Mech. A/Solids
,
47
, pp.
101
123
.10.1016/j.euromechsol.2014.03.002
21.
Quan
,
T. Q.
, and
Duc
,
N. D.
,
2016
, “
Nonlinear Vibration and Dynamic Response of Shear Deformable Imperfect Functionally Graded Double-Curved Shallow Shells Resting on Elastic Foundations in Thermal Environments
,”
J. Therm. Stresses
,
39
(
4
), pp.
437
459
.10.1080/01495739.2016.1158601
22.
Kar
,
V. R.
, and
Panda
,
S. K.
,
2016
, “
Nonlinear Thermomechanical Behavior of Functionally Graded Material Cylindrical/Hyperbolic/Elliptical Shell Panel With Temperature-Dependent and Temperature-Independent Properties
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
061202
.10.1115/1.4033701
23.
Kar
,
V. R.
, and
Panda
,
S. K.
,
2015
, “
Free Vibration Responses of Temperature Dependent Functionally Graded Curved Panels Under Thermal Environment
,”
Lat. Am. J. Solids Struct.
,
12
(
11
), pp.
2006
2024
.10.1590/1679-78251691
24.
Systems
,
D.
,
2014
, “
ABAQUS Analysis User's Guide
,”
Providence, RI
.
25.
Sahoo
,
B.
,
Mehar
,
K.
,
Sahoo
,
B.
,
Sharma
,
N.
, and
Panda
,
S. K.
,
2021
, “
Thermal Post-Buckling Analysis of Graded Sandwich Curved Structures Under Variable Thermal Loadings
,”
Eng. Comput.
, epub.10.1007/s00366-021-01514-4
26.
Hissaria
,
P.
,
Ramteke
,
P. M.
,
Hirwani
,
C. K.
,
Mahmoud
,
S. R.
,
Kumar
,
E. K.
, and
Panda
,
S. K.
,
2022
, “
Numerical Investigation of Eigenvalue Characteristics (Vibration and Buckling) of Damaged Porous Bidirectional FG Panels
,”
J. Vib. Eng. Technol.
, epub.10.1007/s42417-022-00677-8
27.
Wang
,
Z. W.
,
Han
,
Q. F.
,
Nash
,
D. H.
,
Fan
,
H.
, and
Xia
,
L.
,
2018
, “
Thermal Buckling of Cylindrical Shell With Temperature-Dependent Material Properties: Conventional Theoretical Solution and New Numerical Method
,”
Mech. Res. Commun.
,
92
, pp.
74
80
.10.1016/j.mechrescom.2018.07.009
28.
Wang
,
Z. W.
,
Han
,
Q. F.
,
Nash
,
D. H.
,
Liu
,
P.
, and
Hu
,
D.
,
2018
, “
Investigation of Imperfect Effect on Thermal Buckling of Cylindrical Shell With FGM Coating
,”
Eur. J. Mech. A/Solids
,
69
, pp.
221
230
.10.1016/j.euromechsol.2018.01.004
29.
Wang
,
Z. W.
,
Han
,
Q. F.
,
Nash
,
D. H.
, and
Liu
,
P. Q.
,
2017
, “
Investigation on Inconsistency of Theoretical Solution of Thermal Buckling Critical Temperature Rise for Cylindrical Shell
,”
Thin-Walled Struct.
,
119
, pp.
438
446
.10.1016/j.tws.2017.07.002
30.
Han
,
Q. F.
,
Wang
,
Z. W.
,
David
,
H.
, and
Liu
,
P.
,
2017
, “
Thermal Buckling Analysis of Cylindrical Shell With Functionally Graded Material Coating
,”
Compos. Struct.
,
181
, pp.
171
182
.10.1016/j.compstruct.2017.08.085
31.
Brush
,
D. O.
, and
Almroth
,
B. O.
,
1975
,
Buckling of Bars, Plates, and Shells
,
McGraw-Hill
,
New York
.
32.
Duc
,
N. D.
, and
Quan
,
T. Q.
,
2013
, “
Nonlinear Postbuckling of Imperfect Eccentrically Stiffened P-FGM Double Curved Thin Shallow Shells on Elastic Foundations in Thermal Environments
,”
Compos. Struct.
,
106
, pp.
590
600
.10.1016/j.compstruct.2013.07.010
33.
Praveen
,
G. N.
, and
Reddy
,
J. N.
,
1998
, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
,
35
(
33
), pp.
4457
4476
.10.1016/S0020-7683(97)00253-9
34.
Duc
,
N. D.
,
Pham
,
T. T.
,
Nguyen
,
T. D.
, and
Hoang
,
V. T.
,
2015
, “
Nonlinear Buckling of Higher Deformable S-FGM Thick Circular Cylindrical Shells With Metal-Ceramic-Metal Layers Surrounded on Elastic Foundations in Thermal Environment
,”
Compos. Struct.
,
121
, pp.
134
141
.10.1016/j.compstruct.2014.11.009
35.
Benchallal
,
R.
,
Benslimane
,
A.
,
Bidgoli
,
O.
, and
Hammiche
,
D.
,
2022
, “
Analytical Solution for Rotating Cylindrical FGM Vessel Subjected to Thermomechanical Loadings
,”
Mater. Today: Proc.
,
53
, pp.
24
30
.10.1016/j.matpr.2021.12.212
36.
Nejad
,
M. Z.
,
Rastgoo
,
A.
, and
Hadi
,
A.
,
2014
, “
Exact Elasto-Plastic Analysis of Rotating Disks Made of Functionally Graded Materials
,”
Int. J. Eng. Sci.
,
85
, pp.
47
57
.10.1016/j.ijengsci.2014.07.009
37.
Peng
,
X. L.
, and
Li
,
X. F.
,
2010
, “
Thermoelastic Analysis of a Cylindrical Vessel of Functionally Graded Materials
,”
Int. J. Pressure Vessels Piping
,
87
(
5
), pp.
203
210
.10.1016/j.ijpvp.2010.03.024
You do not currently have access to this content.