Abstract

Due to their thin-walled characteristics, axially loaded circular cylindrical shells (CCSs) commonly undergo buckling failure. The limiting buckling stress of such shells has not yet been fully developed due to a wide range of influencing parameters such as sensitivity to imperfections, nonlinearity, and buckling mode. It has been proved early, and in this study, that the nonaxisymmetric buckling stress can be one of the remedies that casts into eliminating the overestimation caused by the classical axisymmetric buckling formula. However, the complex nonlinear constrained optimization required to obtain the nonaxisymmetric buckling stress and mode remains to be the main obstacle for practicing engineers to approach the nonaxisymmetric buckling. In this study, the nonaxisymmetric buckling formula has been cast in a compact form and possible approaches to utilize it have been discussed considering the degree of user knowledge and availability of computational tools. Moreover, it has been used to derive a closed-form buckling stress formula that considers the effect of all geometric and material properties. The proposed closed-form formula predicts buckling stress that is always less than that of the classical formula for L/R greater than 0.91 and the amount of reduction increases with the increase of L/R ratio. In comparison with the exact nonaxisymmetric buckling formula, the proposed closed-form formula yields buckling stress within ± 4%. Thus, it shares the simplicity of the classical axisymmetric buckling formula and the accuracy of the nonaxisymmetric buckling formula.

References

1.
Rafiee
,
M.
,
Hejazi
,
M.
, and
Amoushahi
,
H.
,
2020
, “
Buckling Response of Composite Cylindrical Shells With Various Stiffener Layouts Under Uniaxial Compressive Loading
,”
Structures
,
33
, pp.
4514
4537
.10.1016/j.istruc.2021.06.092
2.
Mehretehran
,
A. M.
, and
Maleki
,
S.
,
2021
, “
Seismic Response and Failure Modes of Steel Silos With Isotropic Stepped Walls: The Effect of Vertical Component of Ground Motion and Comparison of Buckling Resistances Under Seismic Actions With Those Under Wind or Discharge Loads
,”
Eng. Failure Anal.
,
120
, p.
105100
.10.1016/j.engfailanal.2020.105100
3.
Ignatowicz
,
R.
, and
Hotala
,
E.
,
2020
, “
Failure of Cylindrical Steel Storage Tank Due to Foundation Settlements
,”
Eng. Failure Anal.
,
115
, p.
104628
.10.1016/j.engfailanal.2020.104628
4.
Miladi
,
S.
, and
Razzaghi
,
M. S.
,
2019
, “
Failure Analysis of an un-Anchored Steel Oil Tank Damaged During the Silakhor Earthquake of 2006 in Iran
,”
Eng. Failure Anal.
,
96
, pp.
31
43
.10.1016/j.engfailanal.2018.09.031
5.
Trebuňa
,
F.
,
Šimčák
,
F.
, and
Bocko
,
J.
,
2009
, “
Failure Analysis of Storage Tank
,”
Eng. Failure Anal
,
16
(
1
), pp.
26
38
.10.1016/j.engfailanal.2007.12.005
6.
Castro
,
S. G. P.
,
Zimmermann
,
R.
,
Arbelo
,
M. A.
, and
Degenhardt
,
R.
,
2013
, “
Exploring the Constancy of the Global Buckling Load After a Critical Geometric Imperfection Level in Thin-Walled Cylindrical Shells for Less Conservative Knock-Down Factors
,”
Thin-Walled Struct.
,
72
, pp.
76
87
.10.1016/j.tws.2013.06.016
7.
Chen
,
J. F.
,
Rotter
,
J. M.
, and
Teng
,
J. G.
,
2006
, “
A Simple Remedy for Elephant's Foot Buckling in Cylindrical Silos and Tanks
,”
Adv. Struct. Eng.
,
9
(
3
), pp.
409
420
.10.1260/136943306777641968
8.
Evkin
,
A.
, and
Lykhachova
,
O.
,
2021
, “
Energy Barrier Method for Estimation of Design Buckling Load of Axially Compressed Elasto-Plastic Cylindrical Shells
,”
Thin-Walled Struct.
,
161
, p.
107454
.10.1016/j.tws.2021.107454
9.
Brunesi
,
E.
,
Nascimbene
,
R.
,
Pagani
,
M.
, and
Beilic
,
D.
,
2015
, “
Seismic Performance of Storage Steel Tanks During the May 2012 Emilia, Italy, Earthquakes
,”
J. Perform. Constr. Facil.
,
29
(
5
), p.
04014137
.10.1061/(ASCE)CF.1943-5509.0000628
10.
Teng
,
J. G.
, and
Rotter
,
J. M.
,
2004
,
Buckling of Thin Metal Shells
,
Spon Press
, London, UK.
11.
Yang
,
L.
,
Luo
,
Y.
,
Qiu
,
T.
,
Qiu
,
Y.
, and
Zheng
,
H.
,
2020
, “
An Analytical Solution to the Buckling of Cylindrical Shells Under Arbitrarily Distributed Axial Loads
,”
Int. J. Pressure Vessels Piping
,
187
, p.
104169
.10.1016/j.ijpvp.2020.104169
12.
Dehwah, O.,
2018
, “
Energy-Based Solution for the Buckling of CFRP Stiffened Stainless Steel Cylindrical Shells
,”
M.S. thesis
,
King Fahd University of Petroleum and Minerals
,
Saudi Arabia
.https://eprints.kfupm.edu.sa/id/eprint/140838/
13.
Wang
,
C. M.
, and
Wang
,
C. Y.
,
2004
,
Exact Solutions for Buckling of Structural Members
,
CRC Press
, Boca Raton, FL.
14.
Lundquist
,
E. E.
,
1933
, “
Strength Tests of Thin-Walled Duralumin Cylinders in Compression
,” NACA Report No.
473
.https://ntrs.nasa.gov/citations/19930091547
15.
Wilson
,
M. W.
, and
Newmark
,
N. M.
,
1933
, “
The Strength of Thin Cylindrical Shells as Columns
,” Engineering Experiment Station, University of Illinois at Urbana-Champaign, Bulletin No. 255.https://www.ideals.illinois.edu/items/4957
16.
Wagner
,
H. N. R.
,
Hühne
,
C.
, and
Janssen
,
M.
,
2020
, “
Buckling of Cylindrical Shells Under Axial Compression With Loading Imperfections: An Experimental and Numerical Campaign on Low Knockdown Factors
,”
Thin-Walled Struct.
,
151
, p.
106764
.10.1016/j.tws.2020.106764
17.
Krasovsky
,
V.
, and
Evkin
,
A.
,
2021
, “
Experimental Investigation of Buckling of Dented Cylindrical Shells Under Axial Compression
,”
Thin-Walled Struct.
,
164
, p.
107869
.10.1016/j.tws.2021.107869
18.
Sadovský
,
Z.
, and
Kriváček
,
J.
,
2020
, “
Influential Geometric Imperfections in Buckling of Axially Compressed Cylindrical Shells–a Novel Approach
,”
Eng. Struct.
,
223
, p.
111170
.10.1016/j.engstruct.2020.111170
19.
Kumar
,
V. S.
,
Balamurugan
,
R.
,
Raja
,
T.
, and
Saravanan
,
B.
,
2021
, “
Experimental Investigation on Reliable and Accurate Prediction of Buckling Analysis of Thin Cylindrical Shells With Geometric Imperfections
,”
Mater. Today: Proc.
,
45
, pp.
841
851
.10.1016/j.matpr.2020.02.914
20.
Schenk
,
C. A.
, and
Schuëller
,
G. I.
,
2007
, “
Buckling Analysis of Cylindrical Shells With Cutouts Including Random Boundary and Geometric Imperfections
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
35–36
), pp.
3424
3434
.10.1016/j.cma.2007.03.014
21.
Stranghöner
,
N.
,
Azizi
,
E.
, and
Gorbachov
,
A.
,
2019
, “
Influence of Material Nonlinearity on the Buckling Resistance of Stainless Steel Shells
,”
J. Constr. Steel Res.
,
157
, pp.
386
396
.10.1016/j.jcsr.2019.02.030
22.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
, Vol.
109
,
McGrawHill-Kogakusha Ltd.
,
Tokyo, Japan
.
23.
Ugural
,
A. C.
,
2009
, “
Stresses in Beams
,”
Plates, and Shells
,
CRC Press
, Boca Raton, FL.
24.
European Committee for Standardization (CEN)
,
2007
, Eurocode 3: Design of Steel structures - Part 1-6: Strength and Stability of Shell Structures (EN 1993-1-6 (2007)), European Committee for Standardization (CEN), Brussels, Belgium.
25.
Kobayashi
,
T.
, and
Mihara
,
Y.
,
2010
, “
Application of Abaqus for Practical Postbuckling Analyses of Cylindrical Shells Under Axial Compression
,”
2010 SIMULIA Customer Conference
, Tokyo, Japan.https://www.semanticscholar.org/paper/Application-of-Abaqus-for-Practical-Postbuckling-of-Kobayashi-Mihara/fa92fa967894dc7e54a27e136c28a581c8590f90
26.
Kobayashi
,
T.
,
Mihara
,
Y.
, and
Fujii
,
F.
,
2012
, “
Path-Tracing Analysis for Post-Buckling Process of Elastic Cylindrical Shells Under Axial Compression
,”
Thin-Walled Struct.
,
61
, pp.
180
187
.10.1016/j.tws.2012.05.018
27.
Ismail
,
M. S.
,
Purbolaksono
,
J.
,
Andriyana
,
A.
,
Tan
,
C. J.
,
Muhammad
,
N.
, and
Liew
,
H. L.
,
2015
, “
The Use of Initial Imperfection Approach in Design Process and Buckling Failure Evaluation of Axially Compressed Composite Cylindrical Shells
,”
Eng. Failure Anal.
,
51
, pp.
20
28
.10.1016/j.engfailanal.2015.02.017
28.
Castro
,
S. G.
,
Zimmermann
,
R.
,
Arbelo
,
M. A.
,
Khakimova
,
R.
,
Hilburger
,
M. W.
, and
Degenhardt
,
R.
,
2014
, “
Geometric Imperfections and Lower-Bound Methods Used to Calculate Knock-Down Factors for Axially Compressed Composite Cylindrical Shells
,”
Thin-Walled Struct.
,
74
, pp.
118
132
.10.1016/j.tws.2013.08.011
29.
Iwicki
,
P.
,
Wójcik
,
M.
, and
Tejchman
,
J.
,
2011
, “
Failure of Cylindrical Steel Silos Composed of Corrugated Sheets and Columns and Repair Methods Using a Sensitivity Analysis
,”
Eng. Failure Anal. J.
,
18
(
8
), pp.
2064
2083
.10.1016/j.engfailanal.2011.06.013
30.
A. E. S.
Musa
,
M. A.
Al-Shugaa
., and
H. J.
Al-Gahtani
,
2021
, “
An Equivalent Imperfection-Based FE Simulation of the Stability of Dented Cylindrical Shells Accounting for Unintended Imperfections
,”
Thin-Walled Struct.
,
158
(
2020
), p.
107159
.10.1016/j.tws.2020.107159
31.
Stein
,
M.
,
1962
, “
The Effect on the Buckling of Perfect Cylinders of Prebuckling Deformations and Stresses Induced by Edge Support
,”
Collected Papers on Instability of Shell Structures
, NASA Technical Note D-1510, pp.
217
226
.https://www.semanticscholar.org/paper/The-Effect-onthe-Buckling-of-Perfect-Cylinders-of-Stein/c7e9fd5b6a0ed580d0f9ffad63121aae311023f8
32.
Hoff
,
N. J.
,
1965
, “
Low Buckling Stresses of Axially Compressed Circular Cylindrical Shells of Finite Length
,”
ASME J. Appl. Mech.
,
32
(
3
), pp.
533
541
.10.1115/1.3627255
33.
Hoff
,
N. J.
, and
Rehfield
,
W.
,
1965
, “
Buckling of Axially Compressed Cylindrical Shells at Stresses Smaller Than the Classical Critical Value
,”
ASME J. Appl. Mech.
,
32
(
3
), pp.
542
546
.10.1115/1.3627256
34.
Hoff
,
N. J.
, and
Soong
,
T.-C.
,
1965
, “
Buckling of Circular Cylindrical Shells in Axial Compression
,”
Int. J. Mech. Sci.
,
7
(
7
), pp.
489
520
.10.1016/0020-7403(65)90050-0
35.
Teng
,
J. G.
,
1996
, “
Buckling of Thin Shells: Recent Advances and Trends
,”
ASME Appl. Mech. Rev.
,
49
(
4
), pp.
263
274
.10.1115/1.3101927
36.
Wolfram Research, Inc.
,
2018
,
Mathematica
,
Wolfram Research, Inc.
,
Champaign, IL
.
37.
Maplesoft,
2019
,
Maple
,
a division of Waterloo Maple Inc.
,
Waterloo, ON
.
38.
Kim
,
S. E.
, and
Kim
,
C. S.
,
2002
, “
Buckling Strength of the Cylindrical Shell and Tank Subjected to Axially Compressive Loads
,”
Thin-Walled Struct.
,
40
(
4
), pp.
329
353
.10.1016/S0263-8231(01)00066-0
39.
Rotter
,
J. M.
, and
Schmidt
,
H.
,
2008
,
Buckling of Steel Shells: European Design Recommendations [Eurocode 3, Part 1-6]
, 5th ed.,
ECCS, European Convention for Constructional Steelwork
, Brussels, Belgium.
You do not currently have access to this content.