Abstract

Experiments have shown that ductile failure occurs sooner under cyclic loading conditions than under monotone ones. This reduction of ductility probably arises from an effect called “ratcheting of the porosity” that consists of a continued increase of the mean porosity during each cycle with the number of cycles. Improved micromechanical simulations confirmed this interpretation. The same work also contained a proof that Gurson's classical model for porous ductile materials does not predict any ratcheting of the porosity. In a recent work (Morin et al., 2017, “A Gurson-Type Layer Model for Ductile Porous Solids With Isotropic and Kinematic Hardening,” Int. J. Solids Struct., 118–119, pp. 167–178), the authors proposed a Gurson-type “layer model” better fit than Gurson's original one for the description of the ductile behavior under cyclic loading conditions, using the theory of sequential limit analysis. A very good agreement was obtained between the model predictions and the results of the micromechanical simulations for a rigid-hardenable material. However, the ratcheting of the porosity is a consequence of both hardening and elasticity, and sequential limit analysis (Yang, 1993, “Large Deformation of Structures by Sequential Limit Analysis,” Int. J. Solids Struct., 30(7), pp. 1001–1013; Leu, 2007, “Analytical and Numerical Investigation of Strain-Hardening Viscoplastic Thick-Walled Cylinders Under Internal Pressure by Using Sequential Limit Analysis,” Comput. Methods Appl. Mech. Eng., 196(25–28), pp. 2713–2722; Leblond et al., 2018, “Classical and Sequential Limit Analysis Revisited,” C. R. Méc., 346(4), pp. 336–349.) is strictly applicable in the absence of elasticity. In this work, a proposal is made to take into account elasticity in the layer model through the definition of a new objective stress rate leading to an accurate expression of the porosity rate accounting for both elasticity and plasticity. This proposal is assessed through comparison of its predictions with the results of some new micromechanical simulations performed for matrices exhibiting both elasticity and all types of hardening. Finally, a comparison of the predictions regarding finite element modeling of pipes loaded cyclically is proposed.

References

1.
Schmidt
,
R.
,
Wilkowski
,
G.
,
Scott
,
P.
,
Olsen
,
R.
,
Marschall
,
C.
,
Vieth
,
P.
, and
Paul
,
D.
,
1992
, “
International Piping Integrity Research Group (IPIRG) Program
,” Atomic Energy Control Board, Washington, DC, Report No. INFO–0412.
2.
Gilles
,
P.
,
Jullien
,
B.
, and
Mottet
,
G.
,
1992
, “
Analysis of Cyclic Effects on Ductile Tearing Strength by a Local Approach of Fracture
,”
Adv. Fract. Damage Models Anal. Eng. Probl.
,
137
, pp.
269
284
.
3.
Devaux
,
J.
,
Gologanu
,
M.
,
Leblond
,
J. B.
, and
Perrin
,
G.
,
1997
, “
On Continued Void Growth in Ductile Metals Subjected to Cyclic Loadings
,”
IUTAM Symposium on Nonlinear Analysis of Fracture
, Springer, Dordrecht, Sept. 3–7, pp.
299
310
.10.1007/978-94-011-5642-4_28
4.
Besson
,
J.
, and
Guillemer-Neel
,
C.
,
2003
, “
An Extension of the Green and Gurson Models to Kinematic Hardening
,”
Mech. Mater.
,
35
(
1–2
), pp.
1
18
.10.1016/S0167-6636(02)00169-2
5.
Brocks
,
W.
, and
Steglich
,
D.
,
2003
, “
Damage Models for Cyclic Plasticity
,”
Key Eng. Mater.
,
251–252
, pp.
389
398
.10.4028/www.scientific.net/KEM.251-252.389
6.
Rabold
,
F.
, and
Kuna
,
M.
,
2005
, “
Cell Model Simulation of Void Growth in Nodular Cast Iron Under Cyclic Loading
,”
Comput. Mater. Sci.
,
32
(
3–4
), pp.
489
497
.10.1016/j.commatsci.2004.09.016
7.
Steglich
,
D.
,
Pirondi
,
A.
,
Bonora
,
N.
, and
Brocks
,
W.
,
2005
, “
Micromechanical Modelling of Cyclic Plasticity Incorporating Damage
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
337
351
.10.1016/j.ijsolstr.2004.06.041
8.
Mbiakop
,
A.
,
Constantinescu
,
A.
, and
Danas
,
K.
,
2015
, “
On Void Shape Effects of Periodic Elasto-Plastic Materials Subjected to Cyclic Loading
,”
Eur. J. Mech.-A/Solids
,
49
, pp.
481
499
.10.1016/j.euromechsol.2014.09.001
9.
Lacroix
,
R.
,
Leblond
,
J.-B.
, and
Perrin
,
G.
,
2016
, “
Numerical Study and Theoretical Modelling of Void Growth in Porous Ductile Materials Subjected to Cyclic Loadings
,”
Eur. J. Mech.-A/Solids
,
55
, pp.
100
109
.10.1016/j.euromechsol.2015.08.010
10.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
11.
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1995
, “
An Improved Gurson-Type Model for Hardenable Ductile Metals
,”
Eur. J. Mech. A. Solids
,
14
(
4
), pp.
499
527
.https://www.semanticscholar.org/paper/An-improved-Gurson-type-model-for-hardenablemetals-Leblond-Perrin/d96db61925673f3cbce021a9a5afc2dd28ba7b90
12.
Morin
,
L.
,
Michel
,
J.-C.
, and
Leblond
,
J.-B.
,
2017
, “
A Gurson-Type Layer Model for Ductile Porous Solids With Isotropic and Kinematic Hardening
,”
Int. J. Solids Struct.
,
118–119
, pp.
167
178
.10.1016/j.ijsolstr.2017.03.028
13.
Remmal
,
A. M.
,
Marie
,
S.
, and
Leblond
,
J. B.
, “
New Model for Ductile Rupture Under Cyclic Loading Conditions
,”
ASME
Paper No. PVP2019-93836.10.1115/PVP2019-93836
14.
Yang
,
W. H.
,
1993
, “
Large Deformation of Structures by Sequential Limit Analysis
,” Int. J. Solids Struct., 30(7), pp.
1001
1013
.
15.
Leu
,
S.-Y.
,
2007
, “
Analytical and Numerical Investigation of Strain-Hardening Viscoplastic Thick-Walled Cylinders Under Internal Pressure by Using Sequential Limit Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
25–28
), pp.
2713
2722
.10.1016/j.cma.2007.02.001
16.
Leblond
,
J. B.
,
Kondo
,
D.
,
Morin
,
L.
, and
Remmal
,
A.
,
2018
, “
Classical and Sequential Limit Analysis Revisited
,”
C. R. Méc.
,
346
(
4
), pp.
336
349
.10.1016/j.crme.2017.12.015
17.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.10.1016/0001-6160(84)90213-X
18.
Leblond
,
J.-B.
, and
Morin
,
L.
,
2014
, “
Gurson's Criterion and Its Derivation Revisited
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051012
.10.1115/1.4026112
19.
Cheng
,
L.
,
Danas
,
K.
,
Constantinescu
,
A.
, and
Kondo
,
D.
,
2017
, “
A Homogenization Model for Porous Ductile Solids Under Cyclic Loads Comprising a Matrix With Isotropic and Linear Kinematic Hardening
,”
Int. J. Solids Struct.
,
121
, pp.
174
190
.10.1016/j.ijsolstr.2017.05.024
20.
Miura
,
N.
,
Fujioka
,
T.
,
Kashima
,
K.
,
Miyazaki
,
K.
,
Kanno
,
S.
, and
Ishiwata
,
M.
,
1997
, “
Development of Evaluation Method for Dynamic Fracture of Cracked Pipe
,” CRIEPI, Tokyo, Japan, Report No. T47.
21.
Tranchand
,
B.
,
2015
, “
Proposition D'un Paramètre Énergétique en Déchirure Cyclique: Impact du Séisme Sur la Résistance à la Déchirure Ductile Des Tuyauteries REP
,” thesis, Laboratoire Mécanique des Sols, Structures et Matériaux, Ecole Centrale-Supelec, Gif-sur-Yvette, France.
22.
Remmal
,
A. M.
,
2021
,
Extension de L'approche Locale Aux Solicitations Cycliques de Grandes Amplitudes
,
Institut Jean-Le-Rond-D'Alembert, Sorbonne Université
, Paris, France.
23.
Kumagai
,
T.
,
Miura
,
Y.
,
Miura
,
N.
,
Marie
,
S.
,
Remmal
,
A.
,
Mano
,
A.
,
Li
,
Y.
,
Katsuyama
,
J.
,
Wada
,
Y.
,
Hwang
,
J.-h.
,
Kim
,
Y.-J.
,
Nagashima
,
T.
,
Huh
,
N.-S.
, and
Takahashi
,
A.
,
2021
, “
Benchmark Analysis of Ductile Fracture Simulation for Circumferentially Cracked Pipes Subjected to Bending
,”
ASME J. Pressure Vessel Technol.
, 144(1), p. 011509.10.1115/1.4052852
You do not currently have access to this content.