Abstract

Owing to mathematical and geometrical complexities, there is an evident lack of stability analyses of thick closed shell structures with porosity. Based on an effective analytical approach, for the first time, simultaneous effects of porosities, elasticity of edge constraint, and surrounding elastic media on the buckling resistance capacity of thick functionally graded material (FGM) toroidal shell segments (TSSs) subjected to external pressure, elevated temperature, and combined thermomechanical loads are investigated in this paper. The volume fractions of constituents are varied across the thickness according to power law functions, and effective properties of the FGM are determined using a modified rule of mixture. The porosities exist in the FGM through even and uneven distributions. Governing equations are based on a higher-order shear deformation theory (HSDT) taking into account interactive pressure from surrounding elastic media. These equations are analytically solved and closed-form expressions of buckling loads are derived adopting the two-term form of deflection along with Galerkin method. Parametric studies indicate that the porosities have beneficial and deteriorative influences on the buckling resistance capacity of thermally loaded and pressure-loaded porous FGM TSSs, respectively. Furthermore, tangential constraints of edges lower the buckling resistance capacity of the shells, especially at elevated temperatures.

References

1.
Kandasamy
,
R.
,
Dimitri
,
R.
, and
Tornabene
,
F.
,
2016
, “
Numerical Study on the Free Vibration and Thermal Buckling Behavior of Moderately Thick Functionally Graded Structures in Thermal Environments
,”
Compos. Struct.
,
157
, pp.
207
221
.10.1016/j.compstruct.2016.08.037
2.
Trabelsi
,
S.
,
Frikha
,
A.
,
Zghal
,
S.
, and
Dammak
,
F.
,
2019
, “
A Modified FSDT-Based Four Nodes Finite Shell Element for Thermal Buckling Analysis of Functionally Graded Plates and Cylindrical Shells
,”
Eng. Struct.
,
178
, pp.
444
459
.10.1016/j.engstruct.2018.10.047
3.
Trabelsi
,
S.
,
Frikha
,
A.
,
Zghal
,
S.
, and
Dammak
,
F.
,
2018
, “
Thermal Post-Buckling Analysis of Functionally Graded Material Structures Using a Modified FSDT
,”
Int. J. Mech. Sci.
,
144
, pp.
74
89
.10.1016/j.ijmecsci.2018.05.033
4.
Duc
,
N. D.
, and
Tung
,
H. V.
,
2011
, “
Mechanical and Thermal Postbuckling of Higher Order Shear Deformable Functionally Graded Plates on Elastic Foundations
,”
Compos. Struct.
,
93
(
11
), pp.
2874
2881
.10.1016/j.compstruct.2011.05.017
5.
Tung
,
H. V.
, and
Duc
,
N. D.
,
2014
, “
Nonlinear Response of Shear Deformable FGM Curved Panels Resting on Elastic Foundations and Subjected to Mechanical and Thermal Loading Conditions
,”
Appl. Math. Modell.
,
38
(
11–12
), pp.
2848
2866
.10.1016/j.apm.2013.11.015
6.
Shen
,
H. S.
,
2003
, “
Postbuckling Analysis of Pressure-Loaded Functionally Graded Cylindrical Shells in Thermal Environments
,”
Eng. Struct.
,
25
(
4
), pp.
487
497
.10.1016/S0141-0296(02)00191-8
7.
Shen
,
H. S.
,
2004
, “
Thermal Postbuckling Behavior of Functionally Graded Cylindrical Shells With Temperature-Dependent Properties
,”
Int. J. Solids Struct.
,
41
(
7
), pp.
1961
1974
.10.1016/j.ijsolstr.2003.10.023
8.
Shen
,
H. S.
,
2007
, “
Thermal Postbuckling of Shear Deformable FGM Cylindrical Shells With Temperature-Dependent Properties
,”
Mech. Adv. Mater. Struct.
,
14
(
6
), pp.
439
452
.10.1080/15376490701298942
9.
Shen
,
H. S.
, and
Noda
,
N.
,
2005
, “
Postbuckling of FGM Cylindrical Shells Under Combined Axial and Radial Mechanical Loads in Thermal Environments
,”
Int. J. Solids Struct.
,
42
(
16–17
), pp.
4641
4662
.10.1016/j.ijsolstr.2005.02.005
10.
Tung
,
H. V.
,
2014
, “
Postbuckling of Functionally Graded Cylindrical Shells With Tangential Edge Restraints and Temperature-Dependent Properties
,”
Acta Mech.
,
225
(
6
), pp.
1795
1808
.10.1007/s00707-013-1011-2
11.
Shahsiah
,
R.
, and
Eslami
,
M. R.
,
2003
, “
Thermal Buckling of Functionally Graded Cylindrical Shell
,”
J. Therm. Stresses
,
26
(
3
), pp.
277
294
.10.1080/713855892
12.
Wu
,
L.
,
Jiang
,
Z.
, and
Liu
,
J.
,
2005
, “
Thermoelastic Stability of Functionally Graded Cylindrical Shells
,”
Compos. Struct.
,
70
(
1
), pp.
60
68
.10.1016/j.compstruct.2004.08.012
13.
Brush
,
D. O.
, and
Almroth
,
B. O.
,
1975
,
Buckling of Bars, Plates and Shells
,
McGraw-Hill
,
New York
.
14.
Huang
,
H.
, and
Han
,
Q.
,
2010
, “
Research on Nonlinear Postbuckling of Functionally Graded Cylindrical Shells Under Radial Loads
,”
Compos. Struct.
,
92
(
6
), pp.
1352
1357
.10.1016/j.compstruct.2009.11.016
15.
Huang
,
H.
,
Han
,
Q.
,
Feng
,
N.
, and
Fan
,
X.
,
2011
, “
Buckling of Functionally Graded Cylindrical Shells Under Combined Loads
,”
Mech. Adv. Mater. Struct.
,
18
(
5
), pp.
337
346
.10.1080/15376494.2010.516882
16.
Dung
,
D. V.
, and
Hoa
,
L. K.
,
2013
, “
Nonlinear Buckling and Post-Buckling Analysis of Eccentrically Stiffened Functionally Graded Circular Cylindrical Shells Under External Pressure
,”
Thin-Walled Struct.
,
63
, pp.
117
124
.10.1016/j.tws.2012.09.010
17.
Dung
,
D. V.
, and
Nam
,
V. H.
,
2014
, “
Nonlinear Dynamic Analysis of Eccentrically Stiffened Functionally Graded Circular Cylindrical Thin Shells Under External Pressure and Surrounded by an Elastic Medium
,”
Eur. J. Mech., A/Solids
,
46
, pp.
42
53
.10.1016/j.euromechsol.2014.02.008
18.
Hieu
,
P. T.
, and
Tung
,
H. V.
,
2021
, “
Nonlinear Buckling Behavior of Functionally Graded Material Sandwich Cylindrical Shells With Tangentially Restrained Edges Subjected to External Pressure and Thermal Loadings
,”
J. Sandwich Struct. Mater.
,
23
(
6
), pp.
2000
2027
.10.1177/1099636220908855
19.
Cooper
,
P. A.
,
1972
, “
Buckling of Nearly Cylindrical Shells Under Lateral Pressure
,”
AIAA J.
,
10
(
2
), pp.
232
234
.10.2514/3.6567
20.
Hutchinson
,
J. W.
,
1967
, “
Initial Postbuckling of Toroidal Shell Segments
,”
Int. J. Solids Struct.
,
3
(
1
), pp.
97
115
.10.1016/0020-7683(67)90046-7
21.
Bich
,
D. H.
, and
Ninh
,
D. G.
,
2016
, “
Post-Buckling of Sigmoid-Functionally Graded Material Toroidal Shell Segment Surrounded by an Elastic Foundation Under Thermo-Mechanical Loads
,”
Compos. Struct.
,
138
(
15
), pp.
253
263
.10.1016/j.compstruct.2015.11.044
22.
Hung
,
D. X.
,
Tu
,
T. M.
,
Long
,
N. V.
, and
Anh
,
P. H.
,
2020
, “
Nonlinear Buckling and Postbuckling of FG Porous Variable Thickness Toroidal Shell Segments Surrounded by Elastic Foundation Subjected to Compressive Loads
,”
Aerosp. Sci. Technol.
,
107
, p.
106253
.10.1016/j.ast.2020.106253
23.
Hieu
,
P. T.
, and
Tung
,
H. V.
,
2019
, “
Thermomechanical Nonlinear Buckling of Pressure-Loaded Carbon Nanotube Reinforced Composite Toroidal Shell Segment Surrounded by an Elastic Medium With Tangentially Restrained Edges
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
9
), pp.
3193
3207
.10.1177/0954406218802942
24.
Hieu
,
P. T.
, and
Tung
,
H. V.
,
2020
, “
Thermal and Thermomechanical Buckling of Shear Deformable FG-CNTRC Cylindrical Shells and Toroidal Shell Segments With Tangentially Restrained Edges
,”
Arch. Appl. Mech.
,
90
(
7
), pp.
1529
1546
.10.1007/s00419-020-01682-7
25.
Hieu
,
P. T.
, and
Tung
,
H. V.
,
2020
, “
Buckling of Shear Deformable FG-CNTRC Cylindrical Shells and Toroidal Shell Segments Under Mechanical Loads in Thermal Environments
,”
ZAMM
,
100
(
11
), p.
e201900243
.10.1002/zamm.201900243
26.
Wattanasakulpong
,
N.
, and
Ungbhakorn
,
V.
,
2014
, “
Linear and Nonlinear Vibration Analysis of Elastically Restrained Ends FGM Beams With Porosities
,”
Aerosp. Sci. Technol.
,
32
(
1
), pp.
111
120
.10.1016/j.ast.2013.12.002
27.
Zghal
,
S.
,
Ataoui
,
D.
, and
Dammak
,
F.
,
2020
, “
Static Bending Analysis of Beams Made of Functionally Graded Porous Materials
,”
Mech. Des. Struct. Mach.
, epub.10.1080/15397734.2020.1748053
28.
Gupta
,
A.
, and
Talha
,
M.
,
2018
, “
Influence of Initial Geometric Imperfections and Porosity on the Stability of Functionally Graded Material Plates
,”
Mech. Des. Struct. Mach.
,
46
(
6
), pp.
693
711
.10.1080/15397734.2018.1449656
29.
Cong
,
P. H.
,
Chien
,
T. M.
,
Khoa
,
N. D.
, and
Duc
,
N. D.
,
2018
, “
Nonlinear Thermomechanical Buckling and Post-Buckling Response of Porous FGM Plates Using Reddy's HSDT
,”
Aerosp. Sci. Technol.
,
77
, pp.
419
428
.10.1016/j.ast.2018.03.020
30.
Cuong
,
L. T.
,
Loc
,
T. V.
,
Tinh
,
B. Q.
,
Hoang
,
N. X.
, and
Wahab
,
M. A.
,
2019
, “
Isogeometric Analysis for Size-Dependent Nonlinear Thermal Stability of Porous FG Microplates
,”
Compos. Struct.
,
221
, p.
110838
.10.1016/j.compstruct.2019.04.010
31.
Long
,
V. T.
, and
Tung
,
H. V.
,
2021
, “
Thermal Nonlinear Buckling of Shear Deformable Functionally Graded Cylindrical Shells With Porosities
,”
AIAA J.
,
59
(
6
), pp.
2233
2241
.10.2514/1.J060026
32.
Long
,
V. T.
, and
Tung
,
H. V.
,
2021
, “
Thermomechanical Nonlinear Buckling of Pressurized Shear Deformable FGM Cylindrical Shells Including Porosities and Elastically Restrained Edges
,”
J. Aerosp. Eng.
,
34
(
3
), p.
04021011
.10.1061/(ASCE)AS.1943-5525.0001252
33.
Reddy
,
J. N.
, and
Liu
,
C. F.
,
1985
, “
A Higher-Order Shear Deformation Theory of Laminated Elastic Shells
,”
Int. J. Eng. Sci.
,
23
(
3
), pp.
319
330
.10.1016/0020-7225(85)90051-5
34.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
, New York.
35.
Touloukian
,
Y. S.
,
1967
,
Thermophysical Properties of High Temperature Solid Materials
,
MacMillan
,
New York
.
36.
Reddy
,
J. N.
, and
Chin
,
C. D.
,
1998
, “
Thermomechanical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stresses
,
21
(
6
), pp.
593
626
.10.1080/01495739808956165
You do not currently have access to this content.