Abstract

Statically admissible stress distributions are necessary to evaluate lower bound limit loads. Over the last three decades, several methods have been postulated to obtain these distributions using iterative elastic finite element analyses. Some of the pioneering techniques are the reduced modulus, r-node, elastic compensation, and linear matching methods, to mention a few. A new method, called the bounded elastic moduli multiplier technique (BEMMT), is proposed and the theoretical underpinnings thereof are explained in this paper. BEMMT demonstrates greater robustness, more generality, and better stress distributions, consistently leading to lower-bound limit loads that are closer to elastoplastic finite element analysis estimates. It also leads us to question the validity of the prevailing power law-based stationary stress distributions. Part 2 of this paper offers several case studies to validate this claim.

References

1.
Drucker
,
D. C.
,
Prager
,
W.
, and
Greenberg
,
H. J.
,
1952
, “
Extended Limit Design Theorems for Continuous Media
,”
Q. Appl. Math.
,
9
(
4
), pp.
381
389
.10.1090/qam/45573
2.
Mendelson
,
A.
,
1968
,
Plasticity: Theory and Applications
, 1st ed.,
Macmillan Series in Applied Mechanics
,
New York
.
3.
Marriott
,
D. L.
,
1988
, “
Evaluation of Deformation and Load Control of Stresses Under Inelastic Conditions Using Elastic Finite Element Analysis
,” Proceedings,
ASME PVP-Vol. 136, Pittsburg, PA.
4.
Seshadri
,
R.
,
1991
, “
The Generalized Local Stress Strain (GLOSS) Analysis - Theory and Applications
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
219
227
.10.1115/1.2928749
5.
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1992
, “
A Method for Estimating Limit Loads by Iterative Elastic Analysis. I—Simple Examples
,”
Int. J. Pressure Vessels Piping
,
53
(
1
), pp.
77
95
.10.1016/0308-0161(93)90105-3
6.
Ponter
,
A.
, and
Carter
,
K.
,
1997
, “
Limit State Solutions, Based Upon Linear Elastic Solutions With a Spatially Varying Elastic Modulus
,”
Comput. Methods Appl. Mech. Eng.
,
140
(
3–4
), pp.
237
258
.10.1016/S0045-7825(96)01104-8
7.
Ponter
,
A.
,
2009
, “
The Linear Matching Method for Limit Loads, Shakedown Limits and Ratchet Limits
,”
Limit States of Materials and Structures
, W. Dieter and P. Alan, eds.,
Springer
, Dordrecht, The Netherlands, pp.
1
21
.10.1007/978-1-4020-9634-1_1
8.
Mangalaramanan
,
S. P.
,
1997
, “
Robust Limit Loads Using Elastic Modulus Adjustment Techniques
,”
Ph.D. thesis
,
Saint Johns
, Newfoundland, LB, Canada.https://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp04/nq25774.pdf
9.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
,
1992
, “
Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,”
ASME J. Pressure Vessel Technol.
,
114
(
2
), pp.
201
208
.10.1115/1.2929030
10.
Mangalaramanan
,
P.
, and
Reinhardt
,
W.
,
2001
, “
On Relating Redistributed Elastic and Inelastic Stress Fields
,”
Int. J. Pressure Vessels Piping
,
78
(
4
), pp.
283
293
.10.1016/S0308-0161(01)00041-2
11.
Schulte
,
C. A.
,
1960
, “
Predicting Creep Deflections of Plastic Beams
,”
Proc. ASTM
, 60, pp.
895
904
.
12.
Edelstein
,
W. S.
, and
Hult
,
J.
,
1983
, “
On Stress Redistribution in Structures During Creep
,”
Int. J. Solids Struct.
,
19
(
10
), pp.
915
924
.10.1016/0020-7683(83)90047-1
13.
Penny
,
R. K.
, and
Marriott
,
D. L.
,
1995
,
Design for Creep
, 2nd ed.,
Chapman and Hall
,
Padstow, Cornwall, UK
.
14.
Neuber
,
H.
,
1961
, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
544
550
.10.1115/1.3641780
15.
Molski
,
K.
, and
Glinka
,
G.
,
1981
, “
A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root
,”
Mater. Sci. Eng.
,
50
(
1
), pp.
93
100
.10.1016/0025-5416(81)90089-6
16.
Seshadri
,
R.
, and
Mangalaramanan
,
S.
,
1997
, “
Lower Bound Limit Loads Using Variational Concepts: The -Method
,”
Int. J. Pressure Vessels Piping
,
71
(
2
), pp.
93
106
.10.1016/S0308-0161(96)00071-3
17.
Shield
,
R. T.
, and
Drucker
,
D. C.
,
1961
, “
Design of Thin Walled Torispherical and Toriconical Heads
,”
ASME J. Appl. Mech.
,
28
(
2
), pp.
292
297
.10.1115/1.3641671
18.
Mangalaramanan
,
S. P.
, and
Seshadri
,
R.
,
1997
, “
Limit Loads of Layered Beams and Layered Cylindrical Shells Using the R-Node Method
,” Proceedings of the ASME Pressure Vessels and Piping Conference, PVP-Vol. 353, Fatigue and Fracture, Orlando, FL, July 27–31, pp.
201
214
.
19.
Mangalaramanan
,
S. P.
, and
Seshadri
,
R.
,
1997
, “
Minimum Weight Design of Pressure Components Using R-Nodes
,”
ASME J. Pressure Vessel Technol.
,
119
(
2
), pp.
224
231
.10.1115/1.2842288
20.
Kraus
,
H.
,
1980
,
Creep Analysis of Structures
, 1st ed., John Wiley & Sons Inc., Hoboken, NJ
.
21.
Calladine
,
C. R.
, and
Drucker
,
D. C.
,
1962
, “
Nesting Surfaces of Constant Rate of Energy Dissipation in Creep
,”
Q. Appl. Math.
,
20
(
1
), pp.
79
84
.10.1090/qam/99965
22.
Calladine
,
C. R.
, and
Drucker
,
D. C.
,
1962
, “
A Bound Method for Creep Analysis of Structures: Direct Use of Solutions in Elasticity and Plasticity
,”
J. Mech. Eng. Sci.
,
4
(
1
), pp.
1
11
.10.1243/JMES_JOUR_1962_004_003_02
23.
Boyle
,
J. T.
,
1982
, “
The Theorem of Nesting Surfaces in Steady Creep and Its Application to Generalized Models and Limit Reference Stresses
,”
Res. Mech.
,
4
(
4
), pp.
275
294
.
You do not currently have access to this content.