Abstract

Thaw settlement is one of main reasons caused pipeline failure crossing cold region. The modeling method of mechanical response of pipeline crossing thaw settlement zone is proposed, the mechanical behavior of buried pipeline is investigated. Effects of pipeline and soil parameters on the buried pipeline were discussed. The results show that the high stress area and the maximum axial strain of the pipeline are at the edge of the thaw settlement zone. The upper surface of the pipeline is tensile strain while the lower surface is compressive strain. The maximum ovality of pipeline near the edge of thaw settlement zone tends to oval. The pipeline axial strain, ovality, and displacement decrease with the increasing of pipeline wall thickness while the change of high stress area is not obvious. The high stress area and ovality decrease with the increasing of pipeline diameter while the high stress area is expanded along the axial direction, but axial strain decreases slightly. The high stress area, axial strain, ovality, and displacement of pipeline decrease with the buried depth increases. With the internal pressure increases, the stress and axial strain of pipeline increase, but the ovality decreases. The soil's elasticity modulus has no obvious effect on pipelinès stress, axial strain, and displacement, but it can affect ovality slightly.

References

1.
Chen
,
J. X.
,
2017
, “
Analysis of Critical Buckling Temperature of Oil and Gas Pipelines in Permafrost Area
,” MS thesis,
China University of Petroleum
,
Beijing, China
(in Chinese).
2.
Xu
,
G. Y.
,
Qi
,
J. L.
, and
Jin
,
H. J.
,
2010
, “
Model Test Study on Influence of Freezing and Thawing on the Crude Oil Pipeline in Cold Regions
,”
Cold Region Sci. Technol.
,.
64
(
3
), pp.
262
270
.10.1016/j.coldregions.2010.04.010
3.
Li
,
H. W.
,
Lai
,
Y. M.
,
Wang
,
L. Z.
,
Yang
,
X. S.
,
Jiang
,
N. S.
,
Li
,
L.
,
Wang
,
C.
, and
Yang
,
B. C.
,
2019
, “
Review of the State of the Art: Interactions Between a Buried Pipeline and Frozen Soil
,”
Cold Region Sci. Technol.
,
157
, pp.
171
186
.10.1016/j.coldregions.2018.10.014
4.
Wen
,
Z.
,
Sheng
,
Y.
,
Jin
,
H. J.
,
Li
,
S. Y.
,
Li
,
G. Y.
, and
Niu
,
Y. H.
,
2010
, “
Thermal Elasto-Plastic Computation Model for a Buried Oil Pipeline in Frozen Ground
,”
Cold Region Sci. Technol.
,
64
(
3
), pp.
248
255
.10.1016/j.coldregions.2010.01.009
5.
Yu
,
W. B.
,
Liu
,
W. B.
,
Lai
,
Y. M.
,
Chen
,
L.
, and
Yi
,
X.
,
2014
, “
Nonlinear Analysis of Coupled Temperature-Seepage Problem of Warm Oil Pipe in Permafrost Regions of Northeast China
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
988
995
.10.1016/j.applthermaleng.2014.06.028
6.
Liu
,
B.
,
Crooks
,
J.
,
Nixon
,
J.
, and
Zhou
,
J.
,
2004
, “
Experimental Studies of Pipeline Uplift Resistance in Frozen Ground
,”
ASME
Paper No. IPC2004-0133.10.1115/IPC2004-0133
7.
Kim
,
K.
,
Zhou
,
W.
, and
Huang
,
S. L.
,
2008
, “
Frost Heave Predictions of Buried Chilled Gas Pipeline With the Effect of Permafrost
,”
Cold Region Sci. Technol.
,
53
(
3
), pp.
382
396
.10.1016/j.coldregions.2008.01.002
8.
Wu
,
Y. P.
,
Sheng
,
Y.
,
Wang
,
Y.
,
Jin
,
H. J.
, and
Chen
,
W.
,
2010
, “
Stresses and Deformations in a Buried Oil Pipeline Subject to Differential Frost Heave in Permafrost Regions
,”
Cold Region Sci. Technol.
,
64
(
3
), pp.
256
261
.10.1016/j.coldregions.2010.07.004
9.
Hawlader
,
B. C.
,
Morgan
,
V.
, and
Clark
,
J. I.
,
2006
, “
Modelling of Pipeline Under Differential Frost Heave Considering Post-Peak Reduction of Uplift Resistance in Frozen Soil
,”
Can. Geotech. J.
,
43
(
3
), pp.
282
293
.10.1139/t06-003
10.
Bekele
,
Y. E.
,
Kyokawa
,
H.
,
Kvarving
,
A. M.
,
Kvamsdal
,
T.
, and
Nordal
,
S.
,
2017
, “
Isogeometric Analysis of THM Coupled Process in Ground Freezing
,”
Comput. Geotech.
,
88
, pp.
129
145
.10.1016/j.compgeo.2017.02.020
11.
Talebi
,
F.
, and
Kiyono
,
J. J.
,
2020
, “
Introduction of the Axial Force Terms to Governing Equation for Buried Pipeline Subject to Strike-Slip Fault Movements
,”
Soil Dyn. Earthquake Eng.
,
133
, p.
106125
.10.1016/j.soildyn.2020.106125
12.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2012
, “
Mechanical Behavior of Buried Steel Pipes Crossing Active Strike-Slip Faults
,”
Soil Dyn. Earthquake Eng.
,
41
, pp.
164
180
.10.1016/j.soildyn.2012.05.012
13.
Zhang
,
Y.
, and
Michalowski
,
R. L.
,
2015
, “
Thermal-Hydro-Mechanical Analysis of Frost Heave and Thaw Settlement
,”
J. Geotech. Geoenviron. Eng.
,
141
(
7
), p.
04015027
.10.1061/(ASCE)GT.1943-5606.0001305
14.
Liu
,
B.
,
Liu
,
X. J.
, and
Zhang
,
H.
,
2008
, “
Pipeline Design Code Based on Morphotropy Strain
,”
Nat. Gas Ind.
,
28
(
2
), pp.
129
131
.https://www.researchgate.net/publication/296910840_Pipeline_design_code_based_on_morphotropy_strain
15.
American Society of Mechanical Engineers
,
2007
,
Gas Transmission and Distribution Piping Systems
,
American Society of Mechanical Engineers
,
New York
, Standard No. Ansi/Asme B31.8.
16.
Xu
,
J. F.
,
Abdalla
,
B.
,
Eltaher
,
A.
, and
Jukes
,
P.
,
2009
, “
Permafrost Thawing-Pipeline Interaction Advanced Finite Element Model
,”
ASME
Paper No. OMAE2009-79554.10.1115/OMAE2009-79554
17.
Zhang
,
J.
,
Xie
,
R.
, and
Zhang
,
H.
,
2018
, “
Mechanical Response Analysis of the Buried Pipeline Due to Adjacent Foundation Pit Excavation
,”
Tunnel. Underground Space Technol.
,
78
, pp.
135
145
.10.1016/j.tust.2018.04.026
18.
Zhang
,
J.
,
Liang
,
Z.
, and
Han
,
C. J.
,
2014
, “
Buckling Behavior Analysis of Buried Gas Pipeline Under Strike-Slip Fault Displacement
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
921
928
.10.1016/j.jngse.2014.10.028
19.
Wu
,
K.
, and
Zhang
,
H.
,
2019
, “
Finite Element Analysis of the Buried Pipelines Subjected to Abrupt Displacement Load Locally
,”
J. Saf. Sci. Technol.
,
15
(
4
), pp.
59
63
.
20.
Feng
,
Q. M.
, and
Gao
,
H. Y.
,
1997
, “
Damage Criteria of Buried Pipelines Through Ground Settlement Zone
,”
Earthquake Eng. Eng. Vib.
,
17
(
2
), pp.
59
66
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGGC702.007.htm
You do not currently have access to this content.