Abstract

The present study proposes a new semi-empirical burst capacity model for corroded oil and gas pipelines under combined internal pressure and longitudinal compression. The proposed model evaluates the burst capacity of a corroded pipeline under combined loads as the burst capacity of the pipeline under internal pressure only, which is developed in a recently completed study, multiplied by a correction factor to account for the effect of the longitudinal compression. Extensive parametric elastoplastic finite element analyses (FEA) are carried out, the results of which are used as the basis to develop the correction factor as a function of the corrosion defect sizes and magnitude of the longitudinal compressive stress. The proposed model is validated by a large set of parametric FEA and full-scale burst tests reported in the literature and is shown to provide marked improvements over two existing models, the DNV and RPA-PLLC models, for corroded pipelines under combined loads.

References

1.
Karimian
,
S. A.
,
2006
, “
Response of Buried Steel Pipelines Subjected to Longitudinal and Transverse Ground Movement
,”
Doctoral dissertation
,
University of British Columbia
, Vancouver, BC, Canada.https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/831/items/1.0063294
2.
Wijewickreme
,
D.
,
Karimian
,
H.
, and
Honegger
,
D.
,
2009
, “
Response of Buried Steel Pipelines Subjected to Relative Axial Soil Movement
,”
Can. Geotech. J.
,
46
(
7
), pp.
735
752
.10.1139/T09-019
3.
Meidani
,
M.
,
Meguid
,
M. A.
, and
Chouinard
,
L. E.
,
2017
, “
Evaluation of Soil–Pipe Interaction Under Relative Axial Ground Movement
,”
J. Pipeline Syst. Eng. Pract.
,
8
(
4
), p.
04017009
.10.1061/(ASCE)PS.1949-1204.0000269
4.
Meidani
,
M.
,
Meguid
,
M. A.
, and
Chouinard
,
L. E.
,
2018
, “
Estimating Earth Loads on Buried Pipes Under Axial Loading Condition: Insights From 3D Discrete Element Analysis
,”
Int. J. Geo-Eng.
,
9
(
1
), p.
5
.10.1186/s40703-018-0073-3
5.
Taylor
,
N.
,
Clubb
,
G.
, and
Matheson
,
I.
,
2015
, “
The Effect of Bending and Axial Compression on Pipeline Burst Capacity
,” SPE Offshore Europe Conference and Exhibition,
Society of Petroleum Engineers
, Aberdeen, Scotland, UK, Sept. 8–11, Paper No.
SPE-175464-MS
.10.2118/175464-MS
6.
Cunha
,
S. B.
,
Pacheco
,
M.
, and
da Silva
,
A. B.
,
2016
, “
Numerical Simulations of Burst of Corroded Pipes With Thermally Induced Compressive Axial Strain
,” International Pipeline Conference, Vol.
50251
,
ASME
Paper No. IPC2016-64061.10.1115/IPC2016-64061
7.
Chouchaoui
,
B.
,
1995
, “
Evaluating the Remaining Strength of Corroded Pipelines
,” Ph.D. thesis,
University of Waterloo
, Waterloo, ON, Canada.
8.
Bjørnøy
,
O. H.
,
Sigurdsson
,
G.
, and
Cramer
,
E.
,
2000
, “
Residual Strength of Corroded Pipelines, DNV Test Results
,”
The Tenth International Offshore and Polar Engineering Conference
,
International Society of Offshore and Polar Engineers
, Seattle, WA, May 28–June 2, pp.
189
196
.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE00/All-ISOPE00/ISOPE-I-00-140/6866
9.
Smith
,
M. Q.
, and
Waldhart
,
C. J.
,
2000
, “
Combined Loading Tests of Large Diameter Corroded Pipelines
,”
ASME
Paper No. IPC2000-191.10.1115/IPC2000-191
10.
Liu
,
J.
,
Chauhan
,
V.
,
Ng
,
P.
,
Wheat
,
S.
, and
Hughes
,
C.
,
2009
,
Remaining Strength of Corroded Pipe Under Secondary (Biaxial) Loading (Report No. R9068)
,
GL Industrial Services UK Ltd
., Loughborough, UK.
11.
Mondal
,
B. M.
,
2018
, “
Remaining Strength Assessment of Deteriorating Energy Pipelines
,”
Ph.D. thesis
,
Faculty of Engineering and Applied Science, Memorial University of Newfoundland
,
St. John's, NL, Canada
.https://core.ac.uk/download/pdf/211575008.pdf
12.
Zhang
,
S.
,
Zhou
,
W.
, and Zhang, S., 2021, “
Development of a Burst Capacity Model for Corroded Pipelines Under Internal Pressure and Axial Compression Using Artificial Neural Network
,”
ASME
Paper No. IPC2020-9631.
10.1115/IPC2020-9631
13.
Mondal
,
B. C.
, and
Dhar
,
A. S.
,
2019
, “
Burst Pressure of Corroded Pipelines Considering Combined Axial Forces and Bending Moments
,”
Eng. Struct.
,
186
, pp.
43
51
.10.1016/j.engstruct.2019.02.010
14.
Chen
,
Y.
,
Zhang
,
H.
,
Zhang
,
J.
,
Liu
,
X.
,
Li
,
X.
, and
Zhou
,
J.
,
2014
, “
Residual Bending Capacity for Pipelines With Corrosion Defects
,”
J. Loss Prev. Process Ind.
,
32
, pp.
70
77
.10.1016/j.jlp.2014.07.011
15.
Yu
,
W.
,
Vargas
,
P. M.
, and
Karr
,
D. G.
,
2012
, “
Bending Capacity Analyses of Corroded Pipeline
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
2
), p. 021701.10.1115/1.4004521
16.
Mohd
,
M. H.
,
Lee
,
B. J.
,
Cui
,
Y.
, and
Paik
,
J. K.
,
2015
, “
Residual Strength of Corroded Subsea Pipelines Subject to Combined Internal Pressure and Bending Moment
,”
Ships Offshore Struct.
,
10
(
5
), pp.
554
564
.10.1080/17445302.2015.1037678
17.
Cai
,
J.
,
Jiang
,
X.
,
Lodewijks
,
G.
,
Pei
,
Z.
, and
Wu
,
W.
,
2018
, “
Residual Ultimate Strength of Damaged Seamless Metallic Pipelines With Metal Loss
,”
Mar. Struct.
,
58
, pp.
242
253
.10.1016/j.marstruc.2017.11.011
18.
Cai
,
J.
,
Jiang
,
X.
,
Lodewijks
,
G.
,
Pei
,
Z.
, and
Zhu
,
L.
,
2019
, “
Experimental Investigation of Residual Ultimate Strength of Damaged Metallic Pipelines
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
1
), p.
011703
.10.1115/1.4040974
19.
Shim
,
D. J.
,
Kim
,
Y. J.
, and
Kim
,
Y. J.
,
2005
, “
Reference Stress Based Approach to Predict Failure Strength of Pipes With Local Wall Thinning Under Combined Loading
,”
ASME J. Pressure Vessel Technol.
,
127
(
1
), pp.
76
83
.10.1115/1.1849228
20.
Gao
,
J.
,
Peng
,
Z.
,
Li
,
X.
,
Zhou
,
J.
, and
Zhou
,
W.
,
2018
, “
Bending Capacity of Corroded Pipeline Subjected to Internal Pressure and Axial Loadings
,”
ASME
Paper No. OMAE2018-77602.10.1115/OMAE2018-77602
21.
ASME,
1991
,
Manual for Determining the Remaining Strength of Corroded Pipelines- a Supplement to ASME B31 Code for Pressure Piping
,
The American Society of Mechanical Engineers
,
New York
.
22.
Kiefner
,
J.
, and
Vieth
,
P.
,
1989
,
A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe (No. PR-3-805)
,
Battelle Memorial Institute
,
OH
.
23.
CSA,
2015
,
CSA Z662-15, Oil and Gas Pipeline Systems
,
Canadian Standards Association
,
Mississauga, ON
.
24.
Kiefner
,
J.
, and
Vieth
,
P.
,
1990
, “
PC Program Speeds New Criterion for Evaluating Corroded Pipe
,”
Oil Gas J.
,
88
(
34
), pp.
91
93
.https://www.osti.gov/biblio/6828231-pc-program-speeds-new-criterion-evaluating-corroded-pipe
25.
Ritchie
,
D.
, and
Last
,
S.
,
1995
, “
Burst Criteria of Corroded Pipelines-Defect Acceptance Criteria
,”
Proceedings of the EPRG/PRC 10th Biennial Joint Technical Meeting on Line Pipe Research
, Cambridge, UK, Paper 32.
26.
Norske Veritas
,
D.
,
2017
,
Recommended Practice DNV-RP-F101, Corroded Pipelines
,
Hovic
,
Norway
.
27.
Benjamin
,
A. C.
,
2008
, “
Prediction of the Failure Pressure of Corroded Pipelines Subjected to a Longitudinal Compressive Force Superimposed to the Pressure Loading
,”
ASME
Paper No. IPC2008-64089.10.1115/IPC2008-64089
28.
Arumugam
,
T.
,
Karuppanan
,
S.
, and
Ovinis
,
M.
,
2020
, “
Finite Element Analyses of Corroded Pipeline With Single Defect Subjected to Internal Pressure and Axial Compressive Stress
,”
Mar. Struct.
,
72
, p.
102746
.10.1016/j.marstruc.2020.102746
29.
Zhou
,
H.
,
Wang
,
Y. Y.
,
Stephens
,
M.
,
Bergman
,
J.
, and
Nanney
,
S.
,
2018
, “
Burst Pressure of Pipelines With Corrosion Anomalies Under High Longitudinal Strains
,”
ASME
Paper No. IPC2018-78803.10.1115/IPC2018-78803
30.
Zhang
,
S.
, and
Zhou
,
W.
,
2021
, “
Development of a Burst Capacity Model for Corroded Pipelines Considering Corrosion Defect Width and a Revised Folias Factor Equation
,”
J. Nat. Gas Sci. Eng.
,
88
, p.
103812
.10.1016/j.jngse.2021.103812
31.
Zhang
,
S.
, and
Zhou
,
W.
,
2020
, “
Assessment of Effects of Idealized Defect Shape and Width on the Burst Capacity of Corroded Pipelines
,”
Thin-Walled Struct.
,
154
, p.
106806
.10.1016/j.tws.2020.106806
32.
Al-Owaisi
,
S.
,
Becker
,
A. A.
,
Sun
,
W.
,
Al-Shabibi
,
A.
,
Al-Maharbi
,
M.
,
Pervez
,
T.
, and
Al-Salmi
,
H.
,
2018
, “
An Experimental Investigation of the Effect of Defect Shape and Orientation on the Burst Pressure of Pressurised Pipes
,”
Eng. Failure Anal.
,
93
, pp.
200
213
.10.1016/j.engfailanal.2018.06.011
33.
Stephens
,
D. R.
,
Bubenik
,
T. A.
, and
Francini
,
R. B.
,
1995
,
Residual Strength of Pipeline Corrosion Defects Under Combined Pressure and Axial Loads. Final Report (No. AGA-96005964)
,
Battelle
,
Columbus, OH
.
34.
Kiefner
,
J. F.
,
1969
, “
Fracture Initiation
,”
Paper G, Proceedings of the 4th Symposium on Line Pipe Research, Pipeline Research Committee of the American Gas Association, Dallas, TX, AGA Catalogue
, Paper No. L30075, pp.
G1
G36
.
35.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2005
, “
Influence of Yield-to-Tensile Strength Ratio on Failure Assessment of Corroded Pipelines
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
436
442
.10.1115/1.2042481
36.
Dassault Systèmes
,
D. S.
,
2018
,
Abaqus Analysis User's Guide. Technical Report Abaqus 2016 Documentation
,
Simulia Corp
., Johnston, RI.
37.
Benjamin
,
A. C.
,
de Andrade
,
E. Q.
,
Jacob
,
B. P.
,
Pereira
,
L. C.
, and
Machado
,
P. R.
,
2006
, “
Failure Behavior of Colonies of Corrosion Defects Composed of Symmetrically Arranged Defects
,”
ASME
Paper No. IPC2006-10266.10.1115/IPC2006-10266
You do not currently have access to this content.