Abstract

The paper is devoted to elaboration of the analytical O-procedure for the limit load analysis of complex shaped axial defect in a pressurized pipe. It is based on the classical lower bound theorem of the theory of plasticity, and consists in construction of the statically admissible solution, where distribution of stress satisfies to the equilibrium equations and strength conditions. O-procedure is an optimization process to get the most favorable stress distribution for providing the maximal pressure. It allows to explicitly account for the variable geometrical and physical parameters. Contrary to other approaches, the derived formula for rectangular defect is only a particular case of the general procedure application. Four different methods for the complex defects are compared. They are: first, ASME, A-, rectangular defect formula combined with RSTRENG, R-, procedure, i.e., A–R approach; second, PCORRC, P-, formula with R-procedure, P–R approach; third, Orynyak's, O-, formula with R-procedure, O–R approach; and fourth, our universal O-procedure. The verification begins for rectangular defects where both theoretical and experimental comparison is performed for A-, P-, and O- formulas. The difference between them is small, provided that all three employ the same characteristic of material, here the ultimate strength. Then theoretical comparison for A–R, P–R, O–R approaches and O-procedure is performed for the artificial complex defects, for two symmetrical rectangular defects, for triangular defect. Experimental comparison between four methods is made based on the well-known University of Waterloo full scale tests.

References

1.
Kiefner
,
J. F.
,
Vieth
,
P. H.
, and
Roytman
,
I.
,
1995
, “
Continued Validation of RSTRENG
,”
Pipeline Research Committee of the American Gas Association
,
Kiefner and Associates, Inc
,
Worthington, OH
, Updated Draft Final Report on Contract No. PR 218-9304 to Line Pipe Research Supervisory Committee.
2.
DNVGL
,
2017
, “
Recommended Practice DNVGL-RP-F101: Corroded Pipelines
,” DNVGL, Bærum, Norway, accessed Nov. 15, 2018, https://www.dnvgl.com/oilgas/download/dnvgl-rp-f101-corroded-pipelines.html
3.
Witek
,
M.
,
2021
, “
Structural Integrity of Steel Pipeline With Clusters of Corrosion Defects
,”
Materials
,
14
(
4
), pp.
852
–8
15
.10.3390/ma14040852
4.
Zhou
,
W.
,
Gong
,
C.
, and
Kariyawasam
,
S.
,
2016
, “
Failure Pressure Ratios and Implied Reliability Levels for Corrosion Anomalies on Gas Transmission Pipelines
,”
ASME
Paper No. IPC2016-64383.10.1115/IPC2016-64383
5.
Fitness-for-Service
API 579-1/ASME FFS-1,
2016
, The American Petroleum Institute and the American Society of Mechanical Engineers, API Publishing Services, Washington, DC.
6.
Zhang
,
S.
, and
Zhou
,
W.
,
2021
, “
Development of a Burst Capacity Model for Corroded Pipelines Considering Corrosion Defect Width and a Revised Folias Factor Equation
,”
J. Nat. Gas Sci. Eng.
,
88
, p.
103812
.10.1016/j.jngse.2021.103812
7.
Maxey
,
W. A.
,
Kiefner
,
J. F.
,
Eiber
,
R. J.
, and
Duffy
,
A. R.
,
1972
, “
Ductile Fracture Initiation, Propagation and Arrest in Cylindrical Vessels
,”
Fracture Toughness: Part II
, STP514,
H.
Corten
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
70
81
.
8.
Kiefner
,
J. F.
, and
Veith
,
P. H.
,
1989
, “
A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe
,”
Pipeline Research Council International, Inc., Battelle Memorial Institute
,
Columbus
, OH, Final Report on Project PR-3-805.
9.
Bhardwaj
,
U.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2020
, “
Uncertainty Quantification of Burst Pressure Models of Corroded Pipelines
,”
Int. J. Pressure Vessels Piping
,
188
, p.
104208
.10.1016/j.ijpvp.2020.104208
10.
Staat
,
M.
, and
Vu
,
D. K.
,
2007
, “
Limit Analysis of Flaws in Pressurized Pipes and Cylindrical Vessels. Part I: Axial Defects
,”
Eng. Fract. Mech.
,
74
(
3
), pp.
431
450
.10.1016/j.engfracmech.2006.04.031
11.
Leis
,
B. N.
, and
Stephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe - Part I: Current Status
,”
Proceedings Seventh International Offshore and Polar Engineering Conference
, Honolulu, Hawaii, May 25–30, pp.
624
634
, Paper No. ISOPE-I-97-490.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE97/All-ISOPE97/ISOPE-I-97-490/24221
12.
Leis
,
B. N.
, and
Stephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part II: Alternative Criterion
,”
Proceedings of Seventh International Offshore and Polar Engineering Conference
,
Honolulu, Hawaii
, May 25–30, pp.
635
641
, Paper No. ISOPE-I-97-491.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE97/All-ISOPE97/ISOPE-I-97-491/24254
13.
Yeom
,
K. J.
,
Kim
,
W. S.
, and
Oh
,
K. H.
,
2016
, “
Integrity Assessment of API X70 Pipe With Corroded Girth and Seam Welds Via Numerical Simulation and Burst Test Experiments
,”
Eng. Failure Anal.
,
70
, pp.
375
386
.10.1016/j.engfailanal.2016.09.008
14.
Krasovskii
,
A.
,
Orynyak
,
I.
, and
Torop
,
V.
,
1990
, “
Ductile Failure of Cylindrical Bodies With Axial Cracks Loaded by Internal Pressure
,”
Strength Mater.
,
22
(
2
), pp.
172
177
.10.1007/BF00773234
15.
Orynyak
,
I. V.
,
Torop
,
V. M.
, and
Borodii
,
M. V.
,
1996
, “
Ductile Fracture of a Pipe With a Part-Through Slot
,”
Int. J. Pressure Vessels Piping
,
65
(
2
), pp.
171
179
.10.1016/0308-0161(94)00178-L
16.
Orynyak
,
I. V.
,
2006
, “
Leak and Break Models of Ductile Fracture of Pressurized Pipe With Axial Defects
,”
ASME
Paper No. IPC2006-10066.10.1115/IPC2006-10066
17.
Orynyak
,
I.
,
Ageiev
,
S.
,
Radchenko
,
S.
, and
Zarazovskii
,
M.
,
2015
, “
Local Limit Load Analytical Model for Thick-Walled Pipe With Axial Surface Defect
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051204
.10.1115/1.4029523
18.
Kitching
,
R.
, and
Zarrabi
,
K.
,
1981
, “
Lower Bound to Limit Pressure for Cylindrical Shell With Part-Through Slot
,”
Int. J. Mech. Sci.
,
23
(
1
), pp.
31
48
.10.1016/0020-7403(81)90005-9
19.
Inkabi
,
K. S.
, and
Bea
,
R. G.
,
2004
, “
Burst Database Verification Study for Corroded Line-Pipe
,”
ASME
Paper No. OMAE2004-51036.10.1115/OMAE2004-51036
20.
Staat
,
M.
,
2004
, “
Plastic Collapse Analysis of Longitudinally Flawed Pipes and Vessels
,”
Nucl. Eng. Des.
,
234
, pp.
25
43
.10.1016/j.nucengdes.2004.08.002
21.
Seghier
,
M. A. B.
,
Keshtegar
,
B.
, and
Elahmoune
,
B.
,
2018
, “
Reliability Analysis of Low, Mid and High-Grade Strength Corroded Pipes Based on Plastic Flow Theory Using Adaptive Nonlinear Conjugate Map
,”
Eng. Failure Anal.
,
90
, pp.
245
261
.10.1016/j.engfailanal.2018.03.029
22.
Zhou
,
W.
, and
Huang
,
G.
,
2012
, “
Model Error Assessment of Burst Capacity Models for Defect-Free Pipes
,”
ASME
Paper No. IPC2012-90334.10.1115/IPC2012-90334
23.
Oh
,
D. H.
,
Race
,
J.
,
Oterkus
,
S.
, and
Chang
,
E.
,
2020
, “
A New Methodology for the Prediction of Burst Pressure for API 5 L X Grade Flawless Pipelines
,”
Ocean Eng.
,
212
, p.
107602
.10.1016/j.oceaneng.2020.107602
24.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2006
, “
Average Shear Stress Yield Criterion and Its Application to Plastic Collapse Analysis of Pipelines
,”
Int. J. Pressure Vessels Piping
,
83
(
9
), pp.
663
671
.10.1016/j.ijpvp.2006.06.001
25.
Zhu
,
X. K.
,
2021
, “
A Comparative Study of Burst Failure Models for Assessing Remaining Strength of Corroded Pipelines
,”
J. Pipeline Sci. Eng.
,
1
(
1
), pp.
36
50
.10.1016/j.jpse.2021.01.008
26.
Duffy
,
A. R.
,
McClure
,
G. M.
,
Eiber
,
R. J.
, and
Maxey
,
W. A.
,
1969
, “
Fracture Design Practice for Pressure Piping
,”
Fracture: An Advanced Treatise
,
H.
Liebowitz
, ed., Vol.
5
,
Academic Press
, New York, pp.
159
232
.
27.
Orynyak
,
I. V.
,
Vlasenko
,
N. I.
,
Kozlov
,
V. Y.
,
Andrieshin
,
Y. A.
,
Chechin
,
É. V.
,
Buiskikh
,
K. P.
,
Ageev
,
S. M.
, and
Yanko
,
O. A.
,
2012
, “
Test Results for Edge-Notched Pipe Specimens Within Framework of Experimental Substantiation of the Leak-Before-Break Phenomenon
,”
Strength Mater.
,
44
(
5
), pp.
562
573
.10.1007/s11223-012-9409-y
28.
Amano
,
T.
, and
Makino
,
H.
,
2012
, “
Evaluation of Leak/Rupture Behavior for Axially Part-Through-Wall Notched High-Strength Line Pipes
,”
ASME
Paper No. IPC2012-90216.10.1115/IPC2012-90216
29.
Stoppler
,
W.
,
Sturm
,
D.
,
Scott
,
P.
, and
Wilkowski
,
G.
,
1994
, “
Analysis of the Failure Behaviour of Longitudinally Flawed Pipes and Vessels
,”
Nucl. Eng. Des.
,
151
(
2–3
), pp.
425
448
.10.1016/0029-5493(94)90186-4
30.
Cronin
,
D. S.
,
2000
, “
Assessment of Corrosion Defects in Pipelines
,”
Ph.D. thesis
,
University of Waterloo
,
Waterloo, ON
.http://hdl.handle.net/10012/478
You do not currently have access to this content.