Abstract

The UK Advanced Gas-Cooled reactors (AGRs) have cores made of graphite bricks with dual functions: as structural elements of the core, providing space for and separating fuel and control rods; and as moderator of the nuclear reaction. Nuclear graphite is a quasi-brittle material, where the dominant mechanism for failure is cracking. While cracking of isolated bricks is expected due to operation-induced changes in graphite microstructure and stress fields, these could be tolerated as far as the overall structural function of the core is maintained. Assessment of the whole core behavior has been previously done with whole scale models where bricks have been considered as rigid body elements connected by elastic-brittle springs. This approach does not allow for the realistic assessment of the stresses in the bricks and associated brick cracking. Reported here are results from an ongoing project, which addresses this shortcoming. The proposed model uses deformable bricks with appropriate interactions, allowing for physically realistic whole core analysis. The results are focused on the damage that a graphite moderated reactor develops during a life cycle, how this affects the behavior of the whole core, and how changes in bricks' behavior impacts the core integrity. The proposed methodology is a major step toward high-fidelity assessment of AGRs' fitness for service, required for supporting continuous safe operation and life-extension decisions.

References

1.
Brocklehurst
,
J. E.
, and
Kelly
,
B. T.
,
1993
, “
The Dimensional Changes of Highly-Oriented Pyrolytic Graphite Irradiated With Fast Neutrons at 430C to 600C
,”
Carbon
,
31
(
1
), pp.
179
183
.10.1016/0008-6223(93)90170-F
2.
Ahmed
,
K. M.
,
Parker
,
J. V.
, and
Proffitt
,
D. E.
,
1986
, “
Seismic Response of the Advanced Gas Cooled Reactor Core
,”
Nucl. Eng. Des.
,
94
(
1
), pp.
67
92
.10.1016/0029-5493(86)90154-8
3.
Duncan
,
B.
, and
Kralj
,
B.
,
2007
,
Seismic Modelling of an AGR Nuclear Reactor Core
,
Atkins
,
Bristol, UK
.
4.
Kyaw
,
S. T.
,
Tanner
,
D. W. J.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Tsang
,
D. K. L.
,
2014
, “
Modelling Crack Growth Within Graphite Bricks Due to Irradiation and Radiolytic Oxidation
,”
Procedia Mater. Sci.
3
, pp.
39
44
.10.1016/j.mspro.2014.06.009
5.
Crump
,
T.
,
Jivkov
,
A. P.
,
Mummery
,
P.
,
Ferte
,
G.
, and
Tran
,
V.-X.
,
2019
, “
Analysis of Dynamic Fracture and Fragmentation of Graphite Bricks by Combined XFEM and Cohesive Zone Approach
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
117
124
.10.1016/j.ijpvp.2019.02.013
6.
Crump
,
T.
,
Ferté
,
G.
,
Mummery
,
P.
,
Jivkov
,
A. P.
,
Martinuzzi
,
P.
, and
Tran
,
V.-X.
,
2017
, “
Dynamic Fracture Effects on Remote Stress Amplification in AGR Graphite Bricks
,”
Nucl. Eng. Des.
,
323
, pp.
280
289
.10.1016/j.nucengdes.2017.01.014
7.
Li
,
H.
,
Fok
,
A. S.
, and
Marsden
,
B. J.
,
2008
, “
An Analytical Study on the Irradiation-Induced Stresses in Nuclear Graphite Moderator Bricks
,”
J. Nuclear Mater.
,
372
(
2–3
), pp.
164
170
.10.1016/j.jnucmat.2007.03.041
8.
Maruyama
,
T.
,
Eto
,
M.
, and
Oku
,
T.
,
1987
, “
Elastic Modulus and Bend Strength of a Nuclear Graphite at High Temperature
,”
Carbon
,
25
(
6
), pp.
723
726
.10.1016/0008-6223(87)90141-2
9.
Morrison
,
C. N.
,
Jivkov
,
A. P.
,
Vertyagina
,
Y.
, and
Marrow
,
T. J.
,
2016
, “
Multi-Scale Modelling of Nuclear Graphite Tensile Strength Using the Site-Bond Lattice Model
,”
Carbon
,
100
, pp.
273
282
.10.1016/j.carbon.2015.12.100
10.
Mostafavi
,
M.
,
McDonald
,
S. A.
,
Mummery
,
P. M.
, and
Marrow
,
T. J.
,
2013
, “
Observation and Quantification of Three-Dimensional Crack Propagation in Poly-Granular Graphite
,”
Eng. Fract. Mech.
,
110
, pp.
410
420
.10.1016/j.engfracmech.2012.11.023
11.
Zou
,
Z.
,
Fok
,
S. L.
,
Marsden
,
B. J.
, and
Oyadiji
,
S. O.
,
2006
, “
Numerical Simulation of Strength Test on Graphite Moderator Bricks Using a Continuum Damage Mechanics Model
,”
Eng. Fract. Mech.
,
73
(
3
), pp.
318
330
.10.1016/j.engfracmech.2005.08.002
12.
McLachlan
,
N.
,
Szczepura
,
R. T.
,
Davies
,
M. A.
,
Judge
,
R. C. B.
, and
Marsden
,
B. J.
,
1996
, “
A Probabilistic Approach to Assessing AGR Core Life
,”
Nucl. Energy
,
35
(
1
), pp.
15
23
.10.1049/cp:19941113
13.
Becker
,
T.
, and
Marrow
,
J.
,
2013
,
Modelling Damage in Nuclear Graphite
, 13th International Conference on Fracture,
Beijing, China, June 16–21
.https://www.researchgate.net/publication/262035343_Modelling_Damage_in_Nuclear_Graphite
14.
Sato
,
S.
,
Awaji
,
H.
,
Kawamata
,
K.
,
Kurumada
,
A.
, and
Oku
,
T.
,
1987
, “
Fracture Criteria of Reactor Graphite Under Multiaxial Stesses
,”
Nucl. Eng. Des.
,
103
(
3
), pp.
291
300
.10.1016/0029-5493(87)90312-8
15.
Jortner
,
J.
,
1971
,
Multiaxial Behavior of ATJ-S Graphite
,
Mddonnell Douglas Astronautics Co-West
,
Santa Monica, Fort Belvoir, VA
.https://apps.dtic.mil/sti/citations/AD0736470
16.
Yahr
,
G. T.
,
Valachovic
,
R. S.
, and
Greenstreet
,
W. L.
,
1973
, “
Deformation and Fracture of Thin-Walled Graphite Tubes Under Biaxial States of Stress
,”
Carbon
,
11
(
6
), p.
679
.10.1016/0008-6223(73)90404-1
17.
Oku
,
T.
, and
Eto
,
M.
,
1993
, “
Relation Between Static and Dynamic Young's Modulus of Nuclear Graphites and Carbon
,”
Nucl. Eng. Des.
,
143
(
2–3
), pp.
239
243
.10.1016/0029-5493(93)90226-Y
18.
Savija
,
B.
,
Smith
,
G. E.
,
Heard
,
P. J.
,
Sarakinou
,
E.
,
Darnbrough
,
J. E.
,
Hallam
,
K. R.
,
Schlangen
,
E.
, and
Flewitt
,
P. E. J.
,
2018
, “
Modelling Deformation and Fracture of Gilsocarbon Graphite Subject to Service Environments
,”
J. Nuclear Mater.
,
499
, pp.
18
28
.10.1016/j.jnucmat.2017.10.076
19.
Marsden
,
B. J.
,
Haverty
,
M.
,
Bodel
,
W.
,
Hall
,
G. N.
,
Jones
,
A. N.
,
Mummery
,
P. M.
, and
Treifi
,
M.
,
2016
, “
Dimensional Change, Irradiation Creep and Thermal/Mechanical Property Changes in Nuclear Graphite
,”
Int. Mater. Rev.
,
61
(
3
), pp.
155
182
.10.1080/09506608.2015.1136460
You do not currently have access to this content.