Abstract

Creep–fatigue and creep–ratcheting life assessment of an SS304 weldolet considering full creep–cyclic plasticity interaction is investigated using the extended direct steady cycle analysis within the linear matching method framework. The creep behavior is modeled using the Norton relationship, which is modified by the Arrhenius rule to account for the temperature variation within the weldolet. The introduction of a creep dwell increases the reverse plasticity resulting from the creep relaxation. This leads to both creep–fatigue and creep–ratcheting damage mechanisms at different regions within the weldment. For thermal load dominated loading combinations, creep ratcheting due to both cyclically enhanced creep and creep enhanced plasticity are observed based on the dwell period. The effect of dwell period, load and temperature on the creep–fatigue and creep–ratcheting interaction of a weldolet are presented. The simultaneous presence of various damage mechanisms at different locations within the weldment highlights the importance and requirement of the proposed creep–cyclic plasticity investigations at weld locations.

References

1.
Asayama
,
T.
,
2000
, “
Creep-Fatigue Evaluation of Stainless Steel Welded Joints in FBR Class 1 Components
,”
Nucl. Eng. Des.
,
198
(
1–2
), pp.
25
40
.10.1016/S0029-5493(99)00275-7
2.
ASME,
2014
, Boiler and Pressure Vessel Code Section III: Division 1, Subsection NH, Class 1 Components in Elevated Temperature Service, American Society of Mechanical Engineers, New York.
3.
Ainsworth
,
R.
,
2003
,
R5: Assessment Procedure for the High Temperature Response of Structures
,
British Energy Generation
,
Gloucester, UK
.http://www.lib.ncsu.edu/resolver/1840.20/23450
4.
Yang
,
Y.
, and
Mohr
,
W. C.
,
2016
, “
Weld Residual Stress and Creep-Fatigue Analysis of a Furnace Roll in a Continuous Hot Dip Coating Line
,”
ASME
Paper No. PVP2016-63733.10.1115/PVP2016-63733
5.
Cho
,
N.
,
2019
, “
Structural Integrity Assessment of Engineering Components Under Cyclic Loading at High Temperature
,” Ph.D. thesis,
University of Strathclyde
,
Glasgow, Scotland
.
6.
Barbera
,
D.
,
2017
, “
On the Evaluation of High Temperature Creep-Fatigue Responses of Structures
,” Ph.D. thesis,
University of Strathclyde
,
Glasgow, Scotland
.
7.
Chen
,
H.
,
Chen
,
W.
, and
Ure
,
J.
,
2014
, “
A Direct Method on the Evaluation of Cyclic Steady State of Structures With Creep Effect
,”
ASME J. Pressure Vessel Technol.
,
136
(
6
), p.
061404
.10.1115/1.4028164
8.
Barbera
,
D.
,
Chen
,
H.
, and
Liu
,
Y.
,
2016
, “
On Creep Fatigue Interaction of Components at Elevated Temperature
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
041403
.10.1115/1.4032278
9.
Puliyaneth
,
M.
,
Chen
,
H.
, and
Luan
,
W.
,
2018
, “
Creep Fatigue Damage Assessment of V-Butt Weld Pipe With an Extended Direct Steady Cycle Analysis
,”
ASME
Paper No. PVP2018-84568.10.1115/PVP2018-84568
10.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2001
, “
Shakedown and Limit Analyses for 3-D Structures Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
78
(
6
), pp.
443
451
.10.1016/S0308-0161(01)00052-7
11.
Chen
,
H.
,
2010
, “
Lower and Upper Bound Shakedown Analysis of Structures With Temperature-Dependent Yield Stress
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011202
.10.1115/1.4000369
12.
Ure
,
J.
,
Chen
,
H.
,
Li
,
T.
,
Chen
,
W.
,
Tipping
,
D.
, and
Mackenzie
,
D.
,
2011
, “
A Direct Method for the Evaluation of Lower and Upper Bound Ratchet Limits
,”
Procedia Eng.
,
10
, pp.
356
361
.10.1016/j.proeng.2011.04.061
13.
Ponter
,
A. R. S.
, and
Chen
,
H.
,
2001
, “
A Minimum Theorem for Cyclic Load in Excess of Shakedown, With Application to the Evaluation of a Ratchet Limit
,”
Eur. J. Mech. A/Solids
,
20
(
4
), pp.
539
553
.10.1016/S0997-7538(01)01161-5
14.
Gorash
,
Y.
, and
Chen
,
H.
,
2013
, “
Creep-Fatigue Life Assessment of Cruciform Weldments Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
104
, pp.
1
13
.10.1016/j.ijpvp.2012.12.003
15.
Chen
,
H.
, and
Ponter
,
A. R. S.
,
2006
, “
Linear Matching Method on the Evaluation of Plastic and Creep Behaviours for Bodies Subjected to Cyclic Thermal and Mechanical Loading
,”
Int. J. Numer. Methods Eng.
,
68
(
1
), pp.
13
32
.10.1002/nme.1693
16.
Skelton
,
R. P.
, and
Gandy
,
D.
,
2008
, “
Creep-Fatigue Damage Accumulation and Interaction Diagram Based on Metallographic Interpretation of Mechanisms
,”
Mater. High Temp.
,
25
(
1
), pp.
27
54
.10.3184/096034007X300494
17.
Leen
,
S. B.
,
Li
,
M.
,
Barrett
,
R. A.
,
Scully
,
S.
Joyce
,
D.
, and
O'Donoghue
,
P. E.
,
2015
, “
High Temperature, Multi-Material, Cyclic Plasticity of a P91 Welded Branch-Header Connection Under Cyclic Pressure
,”
ASME
Paper No. PVP2015-45605.10.1115/PVP2015-45605
18.
Li
,
M.
,
Barrett
,
R. A.
,
Scully
,
S.
,
Harrison
,
N. M.
,
Leen
,
S. B.
, and
O'Donoghue
,
P. E.
,
2016
, “
Cyclic Plasticity of Welded P91 Material for Simple and Complex Power Plant Connections
,”
Int. J. Fatigue
,
87
, pp.
391
404
.10.1016/j.ijfatigue.2016.02.005
19.
Hibbitt
,
D.
,
Karlsson
,
B.
, and
Sorensen
,
P.
,
2012
, “Abaqus 6.12. 3 Manual,” version 6.12.3.
20.
Hossein
,
A.
,
Sorkhabi
,
D.
, and
Vakili-Tahami
,
F.
,
2012
, “
Experimental Study of the Creep Behavior of Parent, Simulated HAZ and Weld Materials for Cold-Drawn 304 L Stainless Steel
,”
Eng. Fail. Anal.
,
21
, pp.
78
90
.10.1016/j.engfailanal.2011.11.019
21.
Sorkhabi
,
A.
, and
Tahami
,
F. V.
,
2012
, “
Creep Constitutive Equation for 2- Materials of Weldment-304 L Stainless Steel
,”
Int. J. Mech. Mechatronics Eng.
,
6
(
1
), pp.
222
226
.https://internationalresearchconference.org/publications/4995/creep-constitutive-equation-for-2-materials-of-weldment-304l-stainless-steel
22.
Kapoor
,
A.
,
1994
, “
A Re‐Evaluation of the Life to Rupture of Ductile Metals by Cyclic Plastic Strain
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
2
), pp.
201
219
.10.1111/j.1460-2695.1994.tb00801.x
You do not currently have access to this content.