Abstract

In this paper, the stress compensation method (SCM) adopting an elastic-perfectly plastic (EPP) material is further extended to account for limited kinematic hardening (KH) material model based on the extended Melan's static shakedown theorem using a two-surface model defined by two hardening parameters, namely, the initial yield strength and the ultimate yield strength. Numerical analysis of a cylindrical pipe is performed to validate the outcomes of the extended SCM. The results agree well with ones from literature. Then the extended SCM is applied to the shakedown and limit analysis of KH piping elbows subjected to internal pressure and cyclic bending moments. Various loading combinations are investigated to generate the shakedown limit and the plastic limit load interaction curves. The effects of material hardening, elbow angle, and loading conditions on the shakedown limit and the plastic limit load interaction curves are presented and analyzed. The present method is incorporated in a commercial finite element simulation software and can be considered as a general computational tool for shakedown analysis of KH engineering structures. The obtained results provide a useful information for the structural design and integrity assessment of piping elbows.

References

1.
Calladine
,
C. R.
,
1974
, “
Limit Analysis of Curved Tubes
,”
J. Mech. Eng. Sci.
,
16
(
2
), pp.
85
87
.10.1243/JMES_JOUR_1974_016_016_02
2.
Chattopadhyay
,
J.
,
Nathani
,
D. K.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2000
, “
Closed-Form Collapse Moment Equations of Elbows Under Combined Internal Pressure and In-Plane Bending Moment
,”
ASME J. Pressure Vessel Technol.
,
122
(
4
), pp.
431
436
.10.1115/1.1285988
3.
Robertson
,
A.
,
Li
,
H. J.
, and
Mackenzie
,
D.
,
2005
, “
Plastic Collapse of Pipe Bends Under Combined Internal Pressure and In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
82
(
5
), pp.
407
416
.10.1016/j.ijpvp.2004.09.005
4.
Kim
,
Y. J.
, and
Oh
,
C. S.
,
2007
, “
Effects of Attached Straight Pipes on Finite Element Limit Analysis for Pipe Bends
,”
Int. J. Pressure Vessels Piping
,
84
(
3
), pp.
177
184
.10.1016/j.ijpvp.2006.09.017
5.
Li
,
S. J.
,
Zhou
,
C. Y.
,
Li
,
J.
,
Pan
,
X. M.
, and
He
,
X. H.
,
2017
, “
Effect of Bend Angle on Plastic Limit Loads of Pipe Bends Under Different Load Conditions
,”
Int. J. Mech. Sci.
,
131–132
, pp.
572
585
.10.1016/j.ijmecsci.2017.08.019
6.
Tan
,
Y.
, and
Matzen
,
V.
,
2002
, “
Correlation of In-Plane Bending Test and FEA Results for Thin-Walled Elbows
,”
Nucl. Eng. Des.
,
217
(
1–2
), pp.
21
39
.10.1016/S0029-5493(02)00137-1
7.
Chattopadhyay
,
J.
,
Dutta
,
B. K.
,
Kushwaha
,
H. S.
,
Roos
,
E.
, and
Herter
,
K.-H.
,
2004
, “
Load Bearing Capacity of Flawed Piping Components-Comparison of Experiment with Calculation
,”
Int. J. Pressure Vessels Piping
,
81
(
7
), pp.
599
608
.10.1016/j.ijpvp.2004.04.007
8.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
, “
A Simplified Technique for Shakedown Load Determination of a 90 Degree Pipe Bend Subjected to Constant Internal Pressure and Cyclic In-Plane Bending
,”
ASME
Paper No. PVP2005-71470.10.1115/PVP2005-71470
9.
Oh
,
C.-S.
,
Kim
,
Y.-J.
, and
Park
,
C.-Y.
,
2008
, “
Shakedown Limit Loads for Elbows Under Internal Pressure and Cyclic In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
85
(
6
), pp.
394
405
.10.1016/j.ijpvp.2007.11.009
10.
Korba
,
A. G.
,
Megahed
,
M. M.
,
Abdalla
,
H. F.
, and
Nassar
,
M. M.
,
2013
, “
Shakedown Analysis of 90-degree Mitred Pipe Bends
,”
Eur. J. Mech. A/Solids
,
40
, pp.
158
165
.10.1016/j.euromechsol.2013.01.006
11.
Abdalla
,
H. F.
,
2014
, “
Shakedown Boundary Determination of a 90° Back-to-Back Pipe Bend Subjected to Steady Internal Pressures and Cyclic in-Plane Bending Moments
,”
Int. J. Pressure Vessels Piping
,
116
, pp.
1
9
.10.1016/j.ijpvp.2014.01.001
12.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
,
2011
, “
Shakedown Limit Load Determination for a Kinematically Hardening 90 eg Pipe Bend Subjected to Steady Internal Pressures and Cyclic Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
133
(
5
), p. 051212. 10.1115/1.4003474
13.
Simon
,
J. W.
,
2013
, “
Direct Evaluation of the Limit States of Engineering Structures Exhibiting Limited, Nonlinear Kinematical Hardening
,”
Int. J. Plasticity
,
42
, pp.
141
167
.10.1016/j.ijplas.2012.10.008
14.
Mackenzie
,
D.
,
Boyle
,
J. T.
, and
Hamilton
,
R.
,
2000
, “
Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Anal
,
35
(
3
), pp.
171
188
.10.1243/0309324001514332
15.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2001
, “
Shakedown and Limit Analyses for 3-D Structures Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
78
(
6
), pp.
443
451
.10.1016/S0308-0161(01)00052-7
16.
Peng
,
H.
,
Liu
,
Y.
, and
Chen
,
H.
,
2019
, “
A Numerical Formulation And algorithm for Limit and Shakedown Analysis of Large-Scale Elastoplastic Structures
,”
Comput. Mech.
,
63
(
1
), pp.
1
22
.10.1007/s00466-018-1581-x
17.
Peng
,
H.
,
Liu
,
Y.
,
Chen
,
H.
, and
Shen
,
J.
,
2018
, “
Shakedown Analysis of Engineering Structures Under Multiple Variable Mechanical and Thermal Loads Using the Stress Compensation Method
,”
Int. J. Mech. Sci.
,
140
, pp.
361
375
.10.1016/j.ijmecsci.2018.03.020
18.
Peng
,
H.
,
Shen
,
J.
,
Liu
,
Y.
, and
Chen
,
H.
,
2020
, “
Limit and Shakedown Analysis of 45-Degree Piping Elbows Under Internal Pressure and in-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
142
(
2
), p. 021302. 10.1115/1.4045726
19.
Chen
,
H. F.
,
Ure
,
J.
,
Li
,
T. B.
,
Chen
,
W. H.
, and
Mackenzie
,
D.
,
2011
, “
Shakedown and Limit Analysis of 90 Degree Pipe Bends under Internal Pressure, Cyclic In-Plane Bending and Cyclic Thermal Loading
,”
Int. J. Pressure Vessels Piping
,
88
(
5–7
), pp.
213
222
.10.1016/j.ijpvp.2011.05.003
20.
Peng
,
H.
, and
Liu
,
Y.
, “
Shakedown and Limit Analysis of 45-Degree Piping Elbows Under Internal Pressure and Cyclic In-Plane Bending
,”
ASME
Paper No. PVP2019-93263.10.1115/PVP2019-93263
21.
Weichert
,
D.
, and
Gross-Weege
,
J.
,
1988
, “
The Numerical Assessment of Elastic-Plastic Sheets Under Variable Mechanical and Thermal Loads Using a Simplified Two-Surface Yield Condition
,”
Int. J. Mech. Sci.
,
30
(
10
), pp.
757
767
.10.1016/0020-7403(88)90040-9
22.
Heitzer
,
M.
,
Pop
,
G.
, and
Staat
,
M.
,
2000
, “
Basis Reduction for the Shakedown Problem for Bounded Kinematic Hardening Material
,”
J. Global Optim.
,
17
(
1/4
), pp.
185
200
.10.1023/A:1008321026063
23.
Pham
,
D. C.
,
2017
, “
Consistent Limited Kinematic Hardening Plasticity Theory and Path-Independent Shakedown Theorems
,”
Int. J. Mech. Sci.
,
130
(
Suppl. C
), pp.
11
18
.10.1016/j.ijmecsci.2017.06.005
24.
Ma
,
Z.
,
Chen
,
H.
,
Liu
,
Y.
, and
Xuan
,
F.-Z.
,
2020
, “
A Direct Approach to the Evaluation of Structural Shakedown Limit Considering Limited Kinematic Hardening and Non-Isothermal Effect
,”
Eur. J. Mech. A/Solids
,
79
, p.
103877
.10.1016/j.euromechsol.2019.103877
25.
Gokhfeld
,
D. A.
, and
Charniavsky
,
O. F.
,
1980
,
Limit analysis of structures at thermal cycling
,
Alphen aan den Rijn
,
The Netherlands.
26.
Abaqus
,
2014
, “Dassault Systèms, Version 6.14,” Dassault Systèms, Vélizy-Villacoublay, France.
You do not currently have access to this content.