Abstract

To predict fracture behavior for ductile materials, some ductile fracture simulation methods different from classical approaches have been investigated based on appropriate models of ductile fracture. For the future use of the methods to overcome restrictions of classical approaches, the applicability to the actual components is of concern. In this study, two benchmark problems on the fracture tests supposing actual components were provided to investigate the prediction ability of simulation methods containing parameter decisions. One was the circumferentially through-wall and surface cracked pipes subjected to monotonic bending, and the other was the circumferentially through-wall cracked pipes subjected to cyclic bending. Participants predicted the ductile crack propagation behavior by their own approaches, including finite element method (FEM) employed Gurson–Tvergaard–Needleman (GTN) yielding function with void ratio criterion, are FEM employed GTN yielding function, FEM with fracture strain or energy criterion modified by stress triaxiality, extended FEM with J or ΔJ criterion, FEM with stress triaxiality and plastic strain based ductile crack propagation using FEM, and elastic-plastic peridynamics. Both the deformation and the crack propagation behaviors for monotonic bending were well reproduced, while few participants reproduced those for cyclic bending. To reproduce pipe deformation and fracture behaviors, most of the groups needed parameters that were determined to reproduce pipe deformation and fracture behaviors in benchmark problems themselves and it is still difficult to reproduce them by using parameters only from basic materials tests.

References

1.
American Society of Mechanical Engineers
,
2017
, “
BPVC Section XI-Rules for Inservice Inspection of Nuclear Power Plant Components of the ASME
,” ASME, New York, Standard No. BPVC-XI-2017.
2.
Japan Society of Mechanical Engineers
,
2012
, “
Rules on Fitness-for-Service for Nuclear Power Plants
,” JSME, Tokyo, Japan, Standard No. JSME S NA1-2012.
3.
Oh
,
C. S.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2011
, “
A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model
,”
Eng. Fract. Mech.
,
78
(
1
), pp.
124
137
.10.1016/j.engfracmech.2010.10.004
4.
Nam
,
H. S.
,
Oh
,
Y. R.
,
Kim
,
Y. J.
,
Kim
,
J. S.
, and
Miura
,
N.
,
2016
, “
Application of Engineering Ductile Tearing Simulation Method to CRIEPI Pipe Test
,”
Eng. Fract. Mech.
,
153
, pp.
128
142
.10.1016/j.engfracmech.2015.12.012
5.
Ryu
,
H. W.
,
Bae
,
K. D.
,
Kim
,
Y. J.
,
Han
,
J. J.
,
Kim
,
J. S.
, and
Budden
,
P. J.
,
2016
, “
Ductile Tearing Simulation of Battelle Pipe Test Using Simplified Stress-Modified Fracture Strain Concept
,”
Fatigue Fract. Eng. Mater. Struct.
,
39
(
11
), pp.
1391
1406
.10.1111/ffe.12456
6.
Nam
,
H. S.
,
Lee
,
J. M.
,
Youn
,
G. G.
,
Kim
,
Y. J.
, and
Kim
,
J. W.
,
2018
, “
Simulation of Ductile Fracture Toughness Test Under Monotonic and Reverse Cyclic Bending
,”
Int. J. Mech. Sci.
,
135
pp.
609
620
.10.1016/j.ijmecsci.2017.11.037
7.
Nam
,
H. S.
,
Lee
,
J. M.
,
Kim
,
Y. J.
, and
Kim
,
J. W.
,
2018
, “
Numerical Ductile Fracture Prediction of Circumferential Through-Wall Cracked Pipes Under Very Low Cycle Fatigue Loading Condition
,”
Eng. Fract. Mech.
,
194
, pp.
175
189
.10.1016/j.engfracmech.2018.02.025
8.
Nam
,
H. S.
,
Youn
,
G. G.
,
Lee
,
J. M.
,
Kim
,
H. T.
, and
Kim
,
Y. J.
,
2019
, “
Numerical Simulation and Experimental Validation of Ductile Tearing in A106 Gr. B Piping System Under Simulated Seismic Loading Conditions
,”
Proc. Inst. Mech. Eng. Part L
,
233
(
1
), pp.
28
38
.10.1177/1464420718778706
9.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1-Yield Criteria and Flow Rules for Porous Ductile Material
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
10.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cupcone Fracture in a Round Tensile Bar
,”
Acta Metal.
,
32
(
1
), pp.
157
169
.10.1016/0001-6160(84)90213-X
11.
Chu
,
C. C.
, and
Needleman
,
A.
,
1980
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
ASME J. Eng. Mater. Technol.
,
102
(
3
), pp.
249
256
.10.1115/1.3224807
12.
MoëS
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
13.
Miura
,
N.
, and
Nagashima
,
T.
,
2010
, “
Simulation of Ductile Crack Propagation for Pipe Structures Using X-FEM
,”
J. Solid Mech. Mater. Eng., Spec. Issue
,
4
(
3
), pp.
356
364
.10.1299/jmmp.4.356
14.
Cornec
,
A.
,
Scheider
,
I.
, and
Schwalbe
,
K.-H.
,
2003
, “
On the Practical Application of the Cohesive Model
,”
Eng. Fract. Mech.
,
70
(
14
), pp.
1963
1987
.10.1016/S0013-7944(03)00134-6
15.
Silling
,
S. A.
,
2010
, “
Linearized Theory of Peridynamic States
,”
J. Elast.
,
99
(
1
), pp.
85
111
.10.1007/s10659-009-9234-0
16.
Mitchell
,
J. A.
, and
Nonlocal
,
A.
,
2011
, “
Ordinary, State-Based Plasticity Model for Peridynamics
,” Sandia National Lab., Albuquerque, NM, No. SAND2011-3166.
17.
Miura
,
N.
,
Kashima
,
K.
,
Miyazaki
,
K.
,
Aoike
,
K.
,
Hisatsune
,
S.
, and
Hasegawa
,
K.
,
2004
, “
Development of Flaw Evaluation Criteria for Class 2 and 3 Light Water Reactor Piping Establishment of Flaw Evaluation Method for Moderate-Toughness Pipes
,” Central Research Institute of Electric Power Industry, Tokyo, Japan, CRIEPI Report No. T75.
18.
Takanashi
,
M.
,
Izumi
,
S.
,
Sakai
,
S.
, and
Miura
,
N.
,
2004
, “
Quantitative Analysis of Stretched Zone Width Based on Difference of Fracture Surface Roughness
,”
J. Soc. Mater. Sci. Jpn.
,
53
(
8
), pp.
906
921
.10.2472/jsms.53.906
19.
Miura
,
N.
,
Kumagai
,
T.
,
Kikuchi
,
M.
,
Takahashi
,
A.
,
Yun-Jae
,
K.
,
Nagashima
,
T.
, and
Wada
,
Y.
,
2017
, “
Benchmark Analysis of Ductile Fracture Simulation for Circumferentially Cracked Pipes Subjected to Bending
,”
ASME
Paper No. PVP2017-65548. 10.1115/PVP2017-65548
20.
Faleskog
,
J.
,
Gao
,
X.
, and
Shih
,
C. F.
,
1998
, “
Cell Model for Non-Linear Fracture Analysis-1. Micromechanics Calibration
,”
Int. J. Fract.
,
89
(
4
), pp.
355
373
.10.1023/A:1007421420901
21.
Dotta
,
F.
, and
Ruggieri
,
C.
,
2003
,
Burst Pressure Predictions of Pipelines With Longitudinal Cracks
,
Rio Pipeline Conference & Exposition 2003
, Rio de Janeiro, Brazil, Oct. 22–24, Article No. IBP328_03.10.1115/PVP2003-2062
22.
Busso
,
E. P.
,
Lei
,
Y.
,
O'Dowd
,
N. P.
, and
Webster
,
G. A.
,
1998
, “
Mechanistic Prediction of Fracture Processes in Ferritic Steel Welds Within the Transition Temperature Regime
,”
ASME Trans. ASME, J. Eng. Mater. Technol.
,
120
(
4
), pp.
328
337
.10.1115/1.2807022
23.
O'Dowd
,
N. P.
,
Lei
,
Y.
, and
Busso
,
E. P.
,
2000
, “
Prediction of Cleavage Failure Probabilities Using the Weibull Stress
,”
Eng. Fract. Mech.
,
67
(
2
), pp.
87
100
.10.1016/S0013-7944(00)00051-5
24.
Dotta
,
F.
, and
Ruggieri
,
C.
,
2004
, “
Structural Integrity Assessments of High Pressure Pipelines With Axial Flaws Using a Micromechanics Model
,”
Int. J. Pressure Vessels Piping
,
81
(
9
), pp.
761
770
.10.1016/j.ijpvp.2004.04.004
25.
Kiran
,
R.
, and
Khandelwal
,
K.
,
2014
, “
Gurson Model Parameters for Ductile Fracture Simulation in ASTM A992 Steels
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
2
), pp.
171
183
.10.1111/ffe.12097
26.
Rahman
,
R.
, and
Foster
,
J. T.
, “
Implementation of Elastic-Plastic Model in PDLAMMPS
,” accessed Nov. 10, 2021, http://lammps.sandia.gov/doc/PDF/PDLammps_EPS.pdf
27.
Kumagai
,
T.
, and
Miura
,
N.
,
2018
, “
Ductile Fracture Simulations for Through Wall Cracked Pipes by Work-Hardening Elastic-Plastic Ordinary State Based Peridynamics
,”
J. Soc. Mater. Sci. Jpn.
,
67
(
2
), pp.
249
255
.10.2472/jsms.67.249
28.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
29.
Miura
,
N.
,
Fujioka
,
T.
,
Kashima
,
K.
,
Miyazaki
,
K.
,
Kanno
,
S.
, and
Ishiwata
,
M.
,
1997
, “
Development of Evaluation Method for Dynamic Fracture of Cracked Pipe
,” Central Research Institute of Electric Power Industry, Tokyo, CRIEPI Report No. T47.
30.
Remmal
,
A. M.
,
Marie
,
S.
, and Leblond, J. B., 2019, “New Model for Ductile Rupture Under Cyclic Loading Conditions,”
ASME
Paper No. PVP2019-93836.10.1115/PVP2019-93836
31.
Morin
,
L.
,
Michel
,
J. C.
, and
Leblond
,
J. B.
,
2017
, “
A Gurson-Type Layer Model for Ductile Porous Solids With Isotropic and Kinematic Hardening
,”
Int. J. Solids Struct
.,
118–119
, pp.
167
178
.10.1016/j.ijsolstr.2017.03.028
32.
Leblond
,
J.-B.
,
Kondo
,
D.
,
Morin
,
L.
, and
Remmal
,
A.
,.
2018
, “
Classical and Sequential Limit Analysis Revisited
,”
C. R. Méc.
,
346
(
4
), pp.
336
349
.10.1016/j.crme.2017.12.015
33.
Chaboche
,
J. L.
,
Van
,
K. D.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
,”
Proceedings of the Fifth International Conference on SMiRT
, Berlin, Germany, Aug. 13–17, Article No. L11-5.https://repository.lib.ncsu.edu/handle/1840.20/26854
34.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
J. Plast.
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
35.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratcheting Effects
,”
Int. J. Plast.
,
7
(
7
), pp.
661
678
.10.1016/0749-6419(91)90050-9
36.
Chaboche
,
J. L.
,
1994
, “
Modeling of Ratcheting: Evaluation of Various Approaches
,”
Eur. J. Mech. A. Solids
,
13
(
4
), pp.
501
518
.https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1260324
37.
Hasunuma
,
S.
,
Miyata
,
Y.
,
Nita
,
Y.
, and
Ogawa
,
T.
,
2012
, “
Low Cycle Fatigue Damage Developed on the Surface and Interior of Steels
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
78
(
786
), pp.
161
170
.10.1299/kikaia.78.161
38.
DeGrassi
,
G.
,
Hofmayer
,
C.
,
Murphy
,
A.
,
Suzuki
,
K.
, and
Namita
,
Y.
,
2003
, “
BNL Nonlinear Pre-Test Seismic Analysis for the NUPEC Ultimate Strength Piping Test Program
,” Brookhaven National Lab., Upton, NY, Report No. BNL-NUREG-71119-2003-CP.
39.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.10.1016/0022-5096(69)90033-7
40.
Ohata
,
M.
, and
Toyoda
,
M.
,
2004
, “
Damage Concept for Evaluating Dudcile Cracking of Steel Structure Subjected to Large-Scale Cyclic Straining
,”
Sci. Technol. Adv. Mater.
,
5
(
1–2
), pp.
241
149
.10.1016/j.stam.2003.10.007
41.
Anderson
,
T. L.
, 2015,
Fracture Mechanics: Fundamentals and Applications
, 3rd ed., CRC Press, Boca Raton, FL.
42.
Hwang
,
J. H.
,
Youn
,
G. G.
,
Kim
,
H. T.
,
Kim
,
Y. J.
, and
Miura
,
N.
,
2020
, “
Ductile Tearing Simulation of STS410 Pipe Fracture Test Under Load-Controlled Large-Amplitude Cyclic Loading: Part I—Effect of Load Ratio
,”
Eng. Fract. Mech.
,
226
, p.
106869
.10.1016/j.engfracmech.2020.106869
43.
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1995
, “
An Improved Gurson-Type Model for Hardenable Ductile Metals
,”
Eur. J. Mech. A. Solids
,
14
(
4
), pp.
499
527
.https://www.semanticscholar.org/paper/An-improved-Gurson-type-model-for-hardenable-metals-Leblond-Perrin/d96db61925673f3cbce021a9a5afc2dd28ba7b90
44.
Muhlich
,
U.
, and
Brocks
,
W.
,
2003
, “
On the Numerical Integration of a Class of Pressure-Dependent Plasticity Models Including Kinematic Hardening
,”
Comput. Mech.
,
31
(
6
), pp.
479
488
.10.1007/s00466-003-0454-z
45.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
2007
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Mater. High Temp.
,
24
(
1
), pp.
1
26
.10.1179/096034007X207589
You do not currently have access to this content.