Abstract

When fluid flows through a regulating valve, static pressure changes due to the change of fluid area. If the static pressure is lower than saturated vapor pressure, cavitations erosion, and flash vaporization will occur. Cavitations and flash vaporization are the main causes of the vibration and noise of the valve. A multihole sleeve valve with a secondary pressure-reducing function is presented in this paper, two pressure-reducing components are assembled to the valve. The high-pressure difference in the valve can be broken down into several small pressure differences. But the pressure-reducing components have a significant influence on the flow resistance coefficient of the valve. So, the common flow resistance coefficient is no longer suitable for designing the multihole, secondary pressure-reducing sleeve valve. In this paper, the relationship of the flow rate, the flow area, and flow resistance coefficient of the valve is established. The flow area and the flow rate of the valve at the different openings are obtained using simulation software. They are substituted into the relationship equation, in this way, the flow resistance coefficients of the valve can be obtained. In order to verify the reliability of the simulation, a parallel flow test equipment for the valve is established, and the flow rate at different opening are detected. The test result shows that the valve designed by simulation conforms to the specified flow characteristics. By the revision of the flow resistance coefficient, the throttling holes of the valve can be designed conveniently and accurately. The designed valve has good flow regulating ability and can solve the problem of cavitations erosion and flash vaporization.

Reference

1.
Lisowski
,
E.
, and
Filo
,
G.
,
2016
, “
CFD Analysis of the Characteristics of a Proportional Flow Control Valve With an Innovative Opening Shape
,”
Energy Convers. Manage.
,
123
(
2016
), pp.
15
28
.10.1016/j.enconman.2016.06.025
2.
Song
,
X. G.
,
Wang
,
L.
, and
Park
,
Y. C.
,
2010
, “Transient Analysis of a Spring-Loaded Pressure Safety Valve Using Computational Fluid Dynamics (CFD),”
ASME J. Pressure Vessel Technol.
,
132
(
5
), p.
054501
.10.1115/1.4001428
3.
Jian
,
P. E. N. G.
, and
Shi-Quan
,
H. E.
,
2020
, “
Structural Optimization and Characteristic Research of Air-Defense Regulating Valve Spool
,”
Chin. Hydraul. Pneumatics
,
44
(
1
), pp.
131
136
.10.11832/j.issn.1000-4858.2020.01.021
4.
Chen
,
F.
,
Ren
,
X.
,
Hu
,
B.
,
Li
,
X.
,
Gu
,
C.
, and
Jin
,
Z.
,
2019
, “
Parametric Analysis on Multi-Stage High Pressure Reducing Valve for Hydrogen Decompression
,”
Int. J. Hydrogen Energy
,
44
(
59
), pp.
31263
31274
.10.1016/j.ijhydene.2019.10.004
5.
Zaki
,
K.
,
Imam
,
Y.
, and
El-Ansary
,
A.
,
2019
, “
Optimizing the Dynamic Response of Pressure Reducing Valves to Transients in Water Networks
,”
J. Water Supply Res. Technol.–AQUA
,
68
(
5
), pp.
303
312
.10.2166/aqua.2019.121
6.
Jin
,
Z.
,
Qiu
,
C.
,
Jiang
,
C.
,
Wu
,
J.
, and
Qian
,
J.
,
2020
, “
Effect of Valve Core Shapes on Cavitation Flow Through a Sleeve Regulating Valve
,”
J. Zhejiang Univ., Sci., A
,
21
(
1
), pp.
1
14
.10.1631/jzus.A1900528
7.
Jin
,
Z. J.
,
Chen
,
F. Q.
,
Qian
,
J. Y.
,
Zhang
,
M.
,
Chen
,
L. L.
,
Wang
,
F.
, and
Fei
,
Y.
,
2016
, “Numerical Analysis of Flow and Temperature Characteristics in a High Multi-Stage Pressure Reducing Valve for Hydrogen Refueling Station,”
Int. J. Hydrogen Energy.
,
41
(
12
), pp.
5559
5570
.10.1016/j.ijhydene.2016.02.013
8.
Wu
,
S.
,
Zhou
,
W.
,
Shi
,
Y.
,
Li
,
M.
, and
Wang
,
Y.
,
2014
, “
Simulation of Flow Characteristics of Internal Flow Field for Labyrinth Regulating Valve Based on CFX
,”
Mach. Tool Hydraul.
,
42
(
23
), pp.
127
130
.
9.
Tao
,
G.
,
Liu
,
J.
,
Zhang
,
S.
,
Jin
,
S.
,
Yu
,
H.
, and
Zhang
,
M.
,
2014
, “
Numerical Simulation on Flow Character of Labyrinth Type Regulating Valve
,”
Fluid Mach.
,
11
(
42
), pp.
50
53
.https://www.semanticscholar.org/paper/Numerical-Simulation-on-Flow-Character-of-Labyrinth-Guoqin/cf72aba3905f252f762a2aa6d5a642509180bdd2
10.
Li
,
S.
,
Li
,
Z.
,
Zhou
,
A.
, and
Wang
,
H.
,
2017
, “
Optimization and Test on Throttle Plate Opening Profile Line of 3-Way Control Ball Valve
,”
J. Huazhong Univ. Sci. Technol. (Natural Sci. Ed.)
,
45
(
2
), pp.
61
66
.10.13245/j.hust.170212
11.
Liu
,
Q.
,
Ye
,
J.
,
Zhang
,
G.
,
Lin
,
Z.
,
Xu
,
H. G.
,
Jin
,
H.
, and
Zhu
,
Z.
,
2019
, “
Study on the Metrological Performance of a Swirlmeter Affected by Flow Regulation With a Sleeve Valve
,”
Flow Meas. Instrum.
,
67
(
2019
), pp.
83
94
.10.1016/j.flowmeasinst.2019.04.003
12.
Liu
,
X.
,
Wu
,
Z.
,
Li
,
B.
,
Zhao
,
J.
,
He
,
J.
,
Li
,
W.
,
Zhang
,
C.
, and
Xie
,
F.
,
2020
, “
Influence of Inlet Pressure on Cavitation Characteristics in Regulating Valve
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(1
), pp.
40
48
.10.1080/19942060.2020.1711811
13.
Ming-Jyh
,
C.
,
Ping-Huang
,
H.
,
Yeuan-Jong
,
C.
, and
Po-Yi
,
T.
,
2013
, “
Numerical Study on Cavitation Occurrence in Globe Valve
,”
J. Energy Eng. ASCE
,
139
(
1
), pp.
25
34
.10.1061/(ASCE)EY.1943-7897.0000084
14.
Berestovitskiy
,
E. G.
,
Ermilov
,
M. A.
,
Kizilov
,
P. I.
, and
Kryuchkov
,
A. N.
,
2015
, “
Research of an Influence of Throttle Element Perforation on Hydrodynamic Noise in Control Valves of Hydraulic Systems
,”
Procedia Eng.
,
106
(
2015
), pp.
284
295
.10.1016/j.proeng.2015.06.037
15.
Husheng
,
L. I.
,
Xiaoqing
,
T. I. A. N.
, and
Fangyuan
,
Y. A. N. G.
,
2016
, “
Coal-Oil Slurry Valve Control Strategies Under Differential Opening Condition
,”
Fluid Mach.
,
44
(
11
), pp.
58
60
.
16.
Li
,
S.
,
Kang
,
Y.
,
Wang
,
T.
,
Pan
,
W.
, and
Li
,
C.
,
2019
, “
Numerical Simulation on Jet Flow Characteristics of Pressure Drop Sleeve of Drain Regulating Valve
,”
Fluid Mach.
,
47
(
12
), pp.
1005
0329
.
17.
Wang
,
J.
,
Du
,
G.
,
Wang
,
J.
,
Geng
,
J.
, and
Li
,
D.
,
2016
, “
The Experiment and Analysis of Transitional Flow in Pipe
,”
J. Hydrodyn.
,
28
(
2
), pp.
313
318
.10.1016/S1001-6058(16)60633-9
18.
Sun
,
B.
,
Yang
,
Z.
, and
Quan
,
W.
,
2014
, “
Cold Flow Test Investigation on Modulation Property of Fluidic Vortex Valve
,”
J. Projectiles, Rockets, Missiles Guid.
,
34
(
6
), pp.
107
109
.
You do not currently have access to this content.