Abstract

Transient-based methods in the frequency domain are used for fault detection in pipes. However, the required measurements are performed with a large number of valve frequencies. Sometimes the number of frequencies in traditional frequency-domain methods can be in the hundreds. More runs are required with higher harmonics when the required number of frequencies is more. The current study aims to overcome this difficulty of requirement of higher number of frequencies. The location and the size of a single leak or a single discrete blockage are proposed to be predicted using two appropriately chosen low frequencies. isopressure frequency responses (IPFRs) are generated by performing numerical experiments with these two low frequencies enabling determination of the fault. The methodology is demonstrated through various numerical examples. The results show that the procedure is quite accurate, with a high level of agreement between the actual and the predicted fault parameters. The error in the result is of the order of the chosen discretization. An uncertainty analysis is performed to illustrate that the prediction error caused by the error in the measurements of the pressure frequency responses (PFRs) depends on the location and the size of the fault itself. The error in prediction results is analyzed in uncertainty analysis with 0.10%, 0.15%, and 0.20% error in the peak head measurement. For the same error in the PFR measurement, the fault lying in a thin density of the contours would lead to a higher error in the final solution.

References

1.
Akyurt
,
M.
,
Zaki
,
G.
, and
Habeebullah
,
B.
,
2002
, “
Freezing Phenomena in Ice–Water Systems
,”
Energy Convers. Manage.
,
43
(
14
), pp.
1773
1789
.10.1016/S0196-8904(01)00129-7
2.
Mohapatra
,
P. K.
,
Chaudhry
,
M. H.
,
Kassem
,
A. A.
, and
Moloo
,
J.
,
2006
, “
Detection of Partial Blockage in Single Pipelines
,”
J. Hydraul. Eng.
,
132
(
2
), pp.
200
206
.10.1061/(ASCE)0733-9429(2006)132:2(200)
3.
Elger
,
D. F.
, and
Roberson
,
J. A.
,
2016
,
Engineering Fluid Mechanics
,
Wiley
,
Hoboken, NJ
.
4.
Colombo
,
A. F.
, and
Karney
,
B. W.
,
2002
, “
Energy and Costs of Leaky Pipes: Toward Comprehensive Picture
,”
J. Water Resource Plan. Manage.
,
128
(
6
), pp.
441
450
.10.1061/(ASCE)0733-9496(2002)128:6(441)
5.
Mpesha
,
W.
,
Gassman
,
S. L.
, and
Chaudhry
,
M. H.
,
2001
, “
Leak Detection in Pipes by Frequency Response Method
,”
J. Hydraul. Eng.
,
127
(
2
), pp.
134
147
.10.1061/(ASCE)0733-9429(2001)127:2(134)
6.
Mohapatra
,
P. K.
,
Chaudhry
,
M. H.
,
Kassem
,
A.
, and
Moloo
,
J.
,
2006b
, “
Detection of Partial Blockages in a Branched Piping System by the Frequency Response Method
,”
ASME J. Fluid Eng.
,
128
(
5
), pp.
1106
1114
.10.1115/1.2238880
7.
Mohapatra
,
P. K.
, and
Chaudhry
,
M. H.
,
2011
, “
Frequency Responses of Single and Multiple Partial Pipeline Blockages
,”
J. Hydraul. Res.
,
49
(
2
), pp.
263
266
.10.1080/00221686.2010.544887
8.
Sattar
,
A. M.
,
Chaudhry
,
M. H.
, and
Kassem
,
A. A.
,
2008
, “
Partial Blockage Detection in Pipelines by Frequency Response Method
,”
J. Hydraul. Eng.
,
134
(
1
), pp.
76
89
.10.1061/(ASCE)0733-9429(2008)134:1(76)
9.
Brunone
,
B.
, and
Ferrante
,
M.
,
2004
, “
Pressure Waves as a Tool for Leak Detection in Closed Conduits
,”
Urban Water J.
,
1
(
2
), pp.
145
155
.10.1080/1573062042000271073
10.
Lee
,
P. J.
,
Vítkovský
,
J. P.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
, and
Liggett
,
J. A.
,
2005
, “
Frequency Domain Analysis for Detecting Pipeline Leaks
,”
J. Hydraul. Eng.
,
131
(
7
), pp.
596
604
.10.1061/(ASCE)0733-9429(2005)131:7(596)
11.
Lee
,
P. J.
,
Vítkovský
,
J. P.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
, and
Liggett
,
J. A.
,
2008
, “
Discrete Blockage Detection in Pipelines Using the Frequency Response Diagram: Numerical Study
,”
J. Hydraul. Eng.
,
134
(
5
), pp.
658
663
.10.1061/(ASCE)0733-9429(2008)134:5(658)
12.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
,
Springer
,
New York
.
13.
Wang
,
X.
,
2002
, “
Leakage and Blockage Detection in Pipelines and Pipe Network Systems Using Fluid Transients
,”
Ph.D. thesis
,
University of Adelaide, Department of Civil and Environmental Engineering
,
Adelaide, Australia
.https://digital.library.adelaide.edu.au/dspace/bitstream/2440/21897/2/02whole.pdf
14.
Gong
,
J.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
, and
Zecchin
,
A. C.
,
2013
, “
Single-Event Leak Detection in Pipeline Using First Three Resonant Responses
,”
J. Hydraul. Eng.
,
139
(
6
), pp.
645
655
.10.1061/(ASCE)HY.1943-7900.0000720
15.
Al-Tofan
,
M.
,
Elkholy
,
M.
,
Khilqa
,
S.
,
Caicedo
,
J.
, and
Chaudhry
,
M. H.
,
2019
, “
Use of Lower Harmonics of Pressure Oscillations for Blockage Detection in Liquid Pipelines
,”
J. Hydraul. Eng.
,
145
(
3
), p.
04018090
.10.1061/(ASCE)HY.1943-7900.0001568
16.
Al-Tofan
,
M.
,
Elkholy
,
M.
,
Khilqa
,
S.
, and
Chaudhry
,
M. H.
,
2020
, “
Leak Detection in Liquid Pipelines Using Lower Harmonics of Pressure Oscillations
,”
J. Pipeline Syst. Eng.
,
11
(
4
), p.
04020033
.10.1061/(ASCE)PS.1949-1204.0000479
17.
MathWorks
,
2014
, “Matlab Release,”
MathWorks
,
Natick, MA
.
18.
Lee
,
P.
,
Tuck
,
J.
,
Davidson
,
M.
, and
May
,
R.
,
2017
, “
Piezoelectric Wave Generation System for Condition Assessment of Field Water Pipelines
,”
J. Hydraul. Res.
,
55
(
5
), pp.
721
730
.10.1080/00221686.2017.1323805
19.
Gong
,
J.
,
Lambert
,
M. F.
,
Nguyen
,
S. T.
,
Zecchin
,
A. C.
, and
Simpson
,
A. R.
,
2018
, “
Detecting Thinner-Walled Pipe Sections Using a Spark Transient Pressure Wave Generator
,”
J. Hydraul. Eng.
,
144
(
2
), p.
06017027
.10.1061/(ASCE)HY.1943-7900.0001409
20.
Gong
,
J.
,
Zecchin
,
A. C.
,
Simpson
,
A. R.
, and
Lambert
,
M. F.
,
2014
, “
Frequency Response Diagram for Pipeline Leak Detection: Comparing the Odd and Even Harmonics
,”
J. Water Resource Plan. Manage
,
140
(
1
), pp.
65
74
.10.1061/(ASCE)WR.1943-5452.0000298
21.
Che
,
T. C.
,
Duan
,
H. F.
,
Pan
,
B.
,
Lee
,
P. J.
, and
Ghidaoui
,
M. S.
,
2019
, “
Energy Analysis of the Resonant Frequency Shift Pattern Induced by Nonuniform Blockages in Pressurized Water Pipes
,”
J. Hydraul. Eng.
,
145
(
7
), p.
04019027
.10.1061/(ASCE)HY.1943-7900.0001607
You do not currently have access to this content.