Abstract

The goal of this study was to identify the chemical component variables that should be used in irradiation embrittlement prediction and to determine the uncertainty of prediction of irradiation embrittlement of reactor pressure vessel (RPV) steels. To this end, statistical analysis using a Bayesian nonparametric (BNP) method was performed for Japanese pressurized water reactor (PWR) surveillance test data whose neutron fluence ranged from 3 × 1018 to 1.2 × 1020 n/cm2 (E > 1 MeV). The BNP method is a machine learning statistical method that takes the complexity and uncertainty of input variables into account. Statistical analysis using an index to select the most suitable combination of input variables revealed that four variables, namely, neutron fluence and Cu, Ni, and Si contents, were the most effective combination for embrittlement prediction. Cu content had the largest effect on the degree of embrittlement, followed by Ni and Si, in that order. The shift in the reference nil-ductility temperature (ΔRTNDT) was also calculated using the probability distribution obtained by the BNP method. The overall standard deviation of the residuals between the calculated and measured values of ΔRTNDT was 8.4 °C, which was comparable to that of the current Japanese embrittlement correlation method (JEAC4201-2013). The 95% credible interval (CI) of the posterior distribution of ΔRTNDT (i.e., the range in which data can exist when the uncertainty of input data is taken into consideration) calculated by the BNP method was identical to or smaller than the margin in the current Japanese embrittlement correlation method described in JEAC4201-2013. This result indicates that an adequate margin is provided in JEAC4201-2013.

References

1.
Odette
,
G. R.
, and
Lucas
,
G. E.
,
2001
, “
Embrittlement of Nuclear Reactor Pressure Vessels
,”
JOM
,
53
(
7
), pp.
18
22
.10.1007/s11837-001-0081-0
2.
Odette
,
G. R.
, and
Wirth
,
B. D.
,
1997
, “
A Computational Microscopy Study of Nanostructural Evolution in Irradiated Pressure Vessel Steels
,”
J. Nucl. Mater.
,
251
, pp.
157
171
.10.1016/S0022-3115(97)00267-5
3.
Yamamoto
,
T.
,
Sokolov
,
M.
, and
Hanson
,
B.
,
2013
, “
Effects of Radiation on Nuclear Materials: 25th Volume
,”
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No. STP 1547.
4.
Soneda
,
N.
,
2014
,
Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants
(Woodhead Publishing Series in Energy),
Elsevier
,
Cambridge, UK
.
5.
U. S. Nuclear Regulatory Commission Regulatory Guide 1.99,
1988
, “
Radiation Embrittlement of Reactor Vessel Materials
,” Revision 2, U. S. Nuclear Regulatory Commission Regulatory, Washington, DC.
6.
Brillaud
,
C.
,
Hedin
,
F.
, and
Houssin
,
B.
,
1987
, “
A Comparison Between French Surveillance Program Results and Predictions of Irradiation Embrittlement; Effects of Radiation on Materials
,”
American Society for Testing and Materials
,
Philadelphia, PA
, Standard No. STP 956, pp.
420
447
.
7.
Erickson
,
M.
,
2010
, “
Development of a Charpy Master Curve-Based Embrittlement Trend Curve
,” Fontevraud, France, Sept. 26–30, Paper No.
A105-T01
.https://inis.iaea.org/search/search.aspx?orig_q=RN:42088704
8.
Kirk
,
M.
,
2012
, “
A Wide-Range Embrittlement Trend Curve for Western RPV Steels
,”
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No. STP-1547, pp.
20
51
.
9.
ASTM,
2015
, “
Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials
,”
ASTM
,
West Conshohocken, PA
, Standard No. E900-15.
10.
Eason
,
E. D.
,
Odette
,
G. R.
,
Nanstad
,
R. K.
, and
Yamamato
,
T.
,
2007
, “
A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2006/530
.https://info.ornl.gov/sites/publications/files/Pub2592.pdf
11.
Soneda
,
N.
,
Dohi
,
K.
,
Nomoto
,
A.
,
Nishida
,
K.
,
Ishino
,
S.
,
Busby
,
J. T.
,
Hanson
,
B.
, and
Dean
,
S. W.
,
2010
, “
Embrittlement Correlation Method for the Japanese Reactor Pressure Vessel Materials
,”
J. ASTM Int.
,
7
(
3
), p.
102127
.10.1520/JAI102127
12.
Japan Electric Association
,
2013
, “
Method of Surveillance Tests for Structural Materials of Nuclear Reactors
,” Japan Electric Association, Japan, Standard No. JEAC4201-2007 (2013 addendum) (in Japanese).
13.
Takamizawa
,
H.
,
Itoh
,
H.
, and
Nishiyama
,
Y.
,
2016
, “
Statistical Analysis Using Bayesian Nonparametric Method for Irradiation Embrittlement of Reactor Pressure Vessels
,”
J. Nucl. Mater.
,
479
, pp.
533
541
.10.1016/j.jnucmat.2016.07.035
14.
Takamizawa
,
H.
, and
Nishiyama
,
Y.
,
2016
, “
Bayesian Statistical Analysis on Chemical Composition Contributing to Irradiation Embrittlement at High Fluence Region
,”
ASME
Paper No. PVP2016-63822.10.1115/PVP2016-63822
15.
Yamashita
,
N.
,
Iwasaki
,
M.
,
Dozaki
,
K.
, and
Soneda
,
N.
,
2009
, “
Industry Practice for the Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels in Japan
,”
ASME
Paper No. ICONE17-75322.10.1115/ICONE17-75322
16.
Hjort
,
N. L.
,
Holmes
,
C.
,
Müller
,
P.
, and
Walker
,
S. G.
,
2010
,
Bayesian Nonparametrics
(Cambridge Series in Statistical and Probabilistic Mathematics),
Cambridge University Press
,
Cambridge, UK
.
17.
Gershman
,
S. J.
, and
Blei
,
D. M.
,
2012
, “
A Tutorial on Bayesian Nonparametric Models
,”
J. Math. Psychol.
,
56
(
1
), pp.
1
12
.10.1016/j.jmp.2011.08.004
18.
R Core Team
,
2020
, “
R: A Language and Environment for Statistical Computing
,” R Foundation for Statistical Computing, Vienna, Austria, accessed March 10, 2021, http://www.r-project.org/index.html
19.
Alejandro
,
J.
,
Hanson
,
T. E.
,
Quintana
,
F. A.
,
Müller
,
P.
, and
Rosner
,
G. L.
,
2011
, “
DPpackage: Bayesian Semi- and Nonparametric Modeling in R
,”
J. Stat. Software
,
40
(
5
), pp.
1
30
.10.18637/jss.v040.i05
20.
Gelman
,
A.
, and
Rubin
,
D. B.
,
1992
, “
A Single Series From the Gibbs Sampler Provides a False Sense of Security
,”
Bayesian Stat.,
4
, pp.
625
631
.https://digitalassets.lib.berkeley.edu/sdtr/ucb/text/305.pdf
21.
Armstrong
,
D. A.
, II
,
2014
,
Analyzing Spatial Models of Choice and Judgment With R
,
CRC Press
,
Boca Raton, FL
.
22.
Watanabe
,
S.
,
2010
, “
Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
,”
J. Mach. Learn. Res.
,
11
, pp.
3571
3591
.https://www.jmlr.org/papers/volume11/watanabe10a/watanabe10a.pdf
23.
NRC
,
1977
, “
Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessels Materials
,” Regulatory Guide 1.99, Revision 1, U.S. Nuclear Regulatory Commission, Washington, DC.
24.
NRC
,
1998
, “
Radiation Embrittlement of Reactor Vessel Materials
,” Regulatory Guide 1.99 Revision 2, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC.
25.
JEAC
,
1991
, “
Method of Surveillance Tests for Structural Materials of Nuclear Reactors
,” Japan Electric Association, Chiyoda-ku, Tokyo, Japan, Dec. 13, Report No. JEAC4201-1991 (in Japanese).
26.
Eason
,
E. D.
,
Wright
,
J. E.
, and
Odette
,
G. R.
,
1998
, “
Improved Embrittlement Correlations for Reactor Pressure Vessel Steels
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6551
.https://www.nrc.gov/docs/ML1401/ML14010A095.pdf
27.
ASTM
, 2002, “
Standard Guide for Predicting Radiation-Induced Transition Shifts for Reactor Vessel Materials, E760(11F)
,”
Annual Book of ASTM Standards, Vol. 12.02, American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No. ASTM-900-02.
28.
Soneda, N., Nakashima
, K.,
Nishida
,
K.
, and
Dohi
,
K.
, “
High Fluence Surveillance Data and Recalibration of RPV Embrittlement Correlation Method in Japan
,”
ASME
Paper No. PVP2013-98076. 10.1115/PVP2013-98076
29.
Ghoneim
,
M. M.
, and
Hammad
,
F. H.
,
1997
, “Pressure Vessel Steels: Influence of Chemical Composition on Irradiation Sensitivity,”
Int. J. Pressure Vessels Piping
,
74
(
3
), pp. 189–198.10.1016/S0308-0161(97)00073-2
30.
Guthrie
,
G. L.
,
1983
, “Pressure-Vessel-Steel Irradiation-Embrittlement Formulas Derived for PWR Surveillance Data,” ANS Annual Meeting, Detroit, MI, June 12-17, Report No.
HEDL-SA-2882
.https://inis.iaea.org/search/search.aspx?orig_q=RN:14802865
31.
Wilford
,
K.
,
2013
, “
The Effect of Microstructure on Irradiation Sensitivity
,”
IAEA TM on Degradation of Primary Components of Pressurized Water Cooled Nuclear Power Plants
,
Vienna, Austria
, Nov. 5–8, pp.
1
15
.
32.
Chen
,
L.
,
Nishida
,
K.
,
Murakami
,
K.
,
Liu
,
L.
,
Kobayashi
,
T.
,
Li
,
Z.
, and
Sekimura
,
N.
,
2018
, “
Effect of Solute Elements on Microstructural Evolution in Fe-Based Alloys During Neutron Irradiation Following Thermal Aging
,”
J. Nucl. Mater.
,
498
, pp.
259
268
.10.1016/j.jnucmat.2017.10.026
33.
Fujii
,
K.
, and
Fukuya
,
K.
,
2017
, “
Influence of Solute Elements on Radiation Embrittlement of Reactor Pressure Vessel Steels
,”
INSS J.
,
24
, p.
NT-5
(in Japanese).
You do not currently have access to this content.