Abstract

In this study, outdoor freeze-thaw cyclic tests on the Q345 steel pipeline portion were conducted to analyze the buried oil pipeline stress evolution in a seasonally frozen soil area, namely, the Mohe–Daqing portion of China–Russia crude oil pipeline. The results obtained show that under the freeze-thaw cycle, the variation trend of soil temperature around the pipeline exhibited a hysteresis pattern, which was similar to that of atmospheric temperatures. The soil frost heaving force was shown to drop with depth, and its value at the pipe top was higher than that at the pipe bottom. With the number of freeze-thaw cycles, the frost heaving force of the soil first increased and finally stabilized, while the principal stress of the pipeline increased gradually, and its extreme value tended to be stable after 7–8 cycles, which was consistent with the “ratchet effect” theory. The above findings made it possible to elaborate on a more efficient freeze-thaw cyclic test setup for clarifying the mechanism of frozen soil/pipeline interactions.

References

1.
Pazderin
,
D. S.
,
2016
, “
The Impact of Global Warming on the Thermal Stabilization of Soil Base of the Buried Pipeline in the Conditions of Permafrost Soils
,”
Oil Ind. J.
, (
7
), pp.
106
108
.https://onepetro.org/OIJ/article-abstract/2016/07/106/16440/The-impact-of-global-warming-on-the-thermal?redirectedFrom=fulltext
2.
Ma
,
Y. B.
,
Tan
,
D. J.
,
Jing
,
H. Y.
,
Xue
,
Q.
, and
Zhang
,
C. Z.
,
2013
, “
Permafrost Hazard of Mohe-Daqing Crude Oil Pipeline
,”
Adv. Mater. Res.
,
734–737
, pp.
2659
2737
.10.4028/www.scientific.net/AMR.734-737.2659
3.
Zhang
,
Y.
,
Li
,
D. Q.
, and
Ming
,
F.
,
2016
, “
Experimental Study on Frontal Movement of Frozen Soils Under Freeze-Thaw Cycles
,”
J. Glaciol. Geocryol.
,
38
(
3
), pp.
679
684
.
4.
Liu
,
D. R.
,
Wang
,
P. F.
,
Wang
,
W.
, and
Hu
,
Y.
,
2019
, “
Melting Mechanism of Buried Oil and Gas Pipeline Trench in Permafrost Region
,”
Oil Gas Storage Transport.
,
38
(
3
), pp.
3
5
.
5.
Zhao
,
X. B.
,
Liu
,
P. Z.
,
Xu
,
S. G.
, and
Liu
,
T. J.
,
2015
, “
Study on the Change of Humidity and Temperature in Black Soil Tillage During Freeze-Thaw Cycle Period in Seasonal Frozen Soil Region
,”
J. Glaciol. Geocryol.
,
37
(
4
), pp.
931
939
.
6.
Cherniavsky
,
A.
,
2018
, “
Ratcheting Analysis of “Pipe-Freezing Soil” Interaction
,”
Cold Regions Sci. Technol.
,
153
, pp.
97
100
.10.1016/j.coldregions.2018.05.005
7.
Wang
,
Y. P.
,
Li
,
G. Y.
,
Jin
,
H. J.
,
Lu
,
L. Z.
,
He
,
R. X.
, and
Zhang
,
P.
,
2016
, “
Thermal State of Soils in the Active Layer and Underlain Permafrost at the Kilometer Post 304 Site Along the China-Russia Crude Oil Pipeline
,”
J. Mountain Sci.
,
13
(
11
), pp.
1984
1994
.10.1007/s11629-016-3908-4
8.
Chen
,
J.
,
Li
,
K.
,
Sheng
,
Y.
, and
Feng
,
Z. L.
,
2014
, “
Variation of Water Temperature of Buried Pipeline in Seasonal Frozen Soil Region and Analysis of Its Influencing Factors
,”
J. Glaciol. Geocryol.
,
36
(
4
), pp.
836
844
.
9.
Che
,
F. Q.
,
Zhou
,
G. Y.
,
Shan
,
J. P.
, and
Duan
,
S. L.
,
2019
, “
Numerical Study on Thermal State of Permafrost Under Buried Thermal Insulation Pipeline
,”
J. Heilongjiang Hydraulic Eng. Coll.
,
10
(
1
), pp.
20
27
.
10.
Arslan
,
H.
,
2016
, “
Finite Element Modeling of Pipe-Soil Interaction in Permafrost Regions
,”
The 26th International Ocean and Polar Engineering Conference
,
Rhodes, Greece
,
June 26–July 2
, pp.
670
676
, Paper No.
ISOPE-I-16-682
.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE16/All-ISOPE16/ISOPE-I-16-682/17137
11.
Fang
,
J. H.
,
Chen
,
X.
,
Xu
,
A. H.
, and
Zhang
,
Z.
,
2018
, “
Experimental Study on the Effect of Freeze-Thaw Cycle on the Physical and Mechanical Properties of Qinghai-Tibet Red Clay
,”
J. Glaciol. Geocryol.
,
40
(
1
), pp.
62
69
.
12.
Zhang
,
H. X.
,
2006
, “
Analysis of Strain Measurement and Data Processing in Complex Stress State
,”
China Meas. Test. Technol.
,
32
(
2
), pp.
52
55
.
13.
Guo
,
X. F.
,
Xia
,
Z. Z.
,
Wu
,
J. Y.
, and
Wang
,
R. Z.
,
2010
, “
Numerical Simulation and Similarity Experimental Study on Temperature Characteristics of Buried Pipeline
,”
Acta Energiae Solaris Sin.
,
31
(
6
), pp.
727
731
.
14.
Jin
,
H.
,
2010
, “
Design and Construction of a Large-Diameter Crude Oil Pipeline in Northeastern China: A Special Issue on Permafrost Pipeline
,”
Cold Regions Sci. Technol.
,
64
(
3
), pp.
209
212
.10.1016/j.coldregions.2010.04.016
15.
Wen
,
Z.
,
Sheng
,
Y.
,
Jin
,
H.
,
Li
,
S.
,
Li
,
G.
, and
Niu
,
Y.
,
2010
, “
Thermal Elasto-Plastic Computation Model for a Buried Oil Pipeline in Frozen Ground
,”
Cold Regions Sci. Technol.
,
64
(
3
), pp.
248
255
.10.1016/j.coldregions.2010.01.009
16.
Fu
,
Z. G.
,
Yu
,
B.
,
Zhu
,
J.
, and
Li
,
W.
,
2012
, “
Thaw Characteristics of Soil Around Buried Pipeline in Permafrost Regions Based on Numerical Simulation of Temperature Fields
,”
J. Therm. Sci. Technol.
,
7
(
1
), pp.
322
333
.10.1299/jtst.7.322
17.
Wang
,
T.
,
Zhou
,
G.
,
Wang
,
J.
, and
Zhao
,
X.
,
2016
, “
Stochastic Analysis of Uncertain Thermal Characteristics of Foundation Soils Surrounding the Crude Oil Pipeline in Permafrost Regions
,”
Appl. Therm. Eng.
,
99
, pp.
591
598
.10.1016/j.applthermaleng.2016.01.099
18.
Xu
,
G. F.
,
Qi
,
J. L.
, and
Jin
,
H. J.
,
2010
, “
Model Test Study on Influence of Freezing and Thawing on the Crude Oil Pipeline in Cold Regions
,”
Cold Regions Sci. Technol.
,
64
(
3
), pp.
262
270
.10.1016/j.coldregions.2010.04.010
19.
Li
,
H.
,
Lai
,
Y.
,
Wang
,
L.
,
Yang
,
X.
,
Jiang
,
N.
,
Li
,
L.
,
Wang
,
C.
, and
Yang
,
B.
,
2019
, “
Review of the State of the Art Interactions Between a Buried Pipeline and Frozen Soil
,”
Cold Regions Sci. Technol.
,
157
, pp.
171
186
.10.1016/j.coldregions.2018.10.014
You do not currently have access to this content.