Abstract

The rapid growth of energy consumption has increased the demand of pipelines for the transportation of oil and gas. UOE is one common technique for manufacturing pipes, and its pipe products are evaluated by tensile tests after cutting and flattening the specimen. The mechanical performance of the pipe sample has a direct influence on their application and a significant economic impact on manufacturers. There is often a change in the yield strength from plate to pipe. This work sets out to provide a critical knowledge base for this change, with emphasizing the important influence of the plate mechanical properties on the pipe so that the quality of pipe can be further ensured. In the work, first, the historical data of the pipe yield strength were collected and plotted to provide an overall insight and a quantitative review on change of the pipe yield strength. Second, an experimentally validated finite element model of the pipe forming and mechanical testing was explained. Finally, using the validated Finite Element model, a parametric study was conducted to determine the individual role that each plate material parameter plays on changing the pipe yield strength. We found that the pipe yield strength can differ significantly by varying the plate properties. This work sheds lights on the desired plate mechanical properties to optimize the final pipe yield strength.

References

1.
Zou
,
T.
,
Li
,
D.
,
Wu
,
G.
, and
Peng
,
Y.
,
2016
, “
Yield Strength Development From High Strength Steel Plate to UOE Pipe
,”
Mater. Des.
,
89
, pp.
1107
1122
.10.1016/j.matdes.2015.10.095
2.
Ren
,
Q.
,
Zou
,
T.
,
Li
,
D.
,
Tang
,
D.
, and
Peng
,
Y.
,
2015
, “
Numerical Study on the X80 UOE Pipe Forming Process
,”
J. Mater. Process. Technol.
,
215
, pp.
264
277
.10.1016/j.jmatprotec.2014.08.013
3.
Do
,
W.
,
Qi
,
L.
, and
Huang
,
L.
,
2010
, “
Analysis on Mechanical Properties Variation of Pipeline Steel Before and After JCOE Process
,”
Welded Pipe Tube
,
5
, pp.
27
31
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGZZ201005004.htm
4.
Walker
,
T. R.
, and
Pick
,
R. J.
,
1990
, “
Approximation of the Axial Strains Developed During the Roll Forming of ERW Pipe
,”
J. Mater. Process. Technol.
,
22
(
1
), pp.
29
44
.10.1016/0924-0136(90)90140-P
5.
Choi
,
C. W.
,
Koh
,
H. J.
, and
Lee
,
S.
,
2000
, “
Analysis and Prevention of Yield Strength Drop During Spiral Piping of Two High-Strength API-X70 Steels
,”
Metall. Mater. Trans. A
,
31
(
10
), pp.
2669
2674
.10.1007/s11661-000-0213-0
6.
Maxey
,
W. A.
,
1969
, “
Pipe Yield Strength Measurements
,”
Fourth Symposium on Line Pipe Research
, Dallas, TX, Nov. 18–19, pp. L1–L9.
7.
Meiwes
,
K. C.
,
Erdelen-Peppler
,
M.
, and
Brauer
,
H.
,
2014
, “
Impact of Small-Scale Reeling Simulation on Mechanical Properties on Line Pipe Steel
,”
ASME
Paper No. IPC2014-33161.10.1115/IPC2014-33161
8.
Hillenbrand
,
H.-G.
,
Liessem
,
A.
,
Biermann
,
K.
,
Heckmann
,
C. J.
, and
Schwinn
,
V.
,
2004
, “
Development of High Strength Material and Pipe Production Technology for Grade X120 Line Pipe
,”
ASME
Paper No. IPC2004-0224.10.1115/IPC2004-0224
9.
Kiefner
,
J. F.
,
Duffy
,
A. R.
, and
McClure
,
G. M.
,
1968
, “
An Investigation of the Methods of Determining the Transverse Yield Strength of Line Pipe
,” Battelle Memorial Institute, Columbus Laboratories, Columbus, OH.
10.
Cotton
,
H.
, and
Thomas
,
D.
,
1970
, “
Super Diameter Pipes for Alaska
,”
Tube and Pipe Production
, Vol.
135
,
The Iron and Steel Institute ISI P
,
London, UK
, pp.
37
46
.
11.
Han
,
S. Y.
,
Sohn
,
S. S.
,
Shin
,
S. Y.
,
Bae
,
J-h.
,
Kim
,
H. S.
, and
Lee
,
S.
,
2012
, “
Effects of Microstructure and Yield Ratio on Strain Hardening and Bauschinger Effect in Two API X80 Linepipe Steels
,”
Mater. Sci. Eng.: A
,
551
, pp.
192
199
.10.1016/j.msea.2012.05.007
12.
Bauschinger
,
J.
,
1881
, “
Ueber die Veraenderung der Elastizitaetsgrenze und des Elastizitaetsmoduls Verschiedener Metalle
,”
Zivilingenieur
,
27
, pp.
289
348
.
13.
Zhang
,
W.
,
Ding
,
D.
, and
Gu
,
M.
,
2012
, “
A Model for Predicting the Yield Strength Difference Between Pipe and Plate of Low-Carbon Microalloyed Steel
,”
Metall. Mater. Trans. A
,
43
(
13
), pp.
5308
5315
.10.1007/s11661-012-1336-9
14.
Cooreman
,
S.
,
Van Hoecke
,
D.
,
Liebeherr
,
M.
,
Thibaux
,
P.
, and
Enderlin
,
M. Y.
,
2016
, “
Experimental and Numerical Study on the Evolution of Mechanical Properties During Spiral Pipe Forming
,”
ASME
Paper No. IPC2016-64183.10.1115/IPC2016-64183
15.
Han
,
K.
,
Van Tyne
,
C.
, and
Levy
,
B.
,
2005
, “
Effect of Strain and Strain Rate on the Bauschinger Effect Response of Three Different Steels
,”
Metall. Mater. Trans. A
,
36
(
9
), pp.
2379
2384
.10.1007/s11661-005-0110-7
16.
Milligan
,
R.
,
Koo
,
W.
, and
Davidson
,
T.
,
1966
, “
The Bauschinger Effect in a High-Strength Steel
,”
ASME J. Basic Eng.
,
88
(
2
), pp.
480
488
.10.1115/1.3645883
17.
Ormandy
,
J.
,
Strangwood
,
M.
, and
Davis
,
C.
,
2003
, “
Effect of Microalloying Additions on Steel Plate to Pipe Property Variations During UOE Linepipe Processing
,”
Mater. Sci. Technol.
,
19
(
5
), pp.
595
601
.10.1179/026708303225010795
18.
Kostryzhev
,
A.
,
Strangwood
,
M.
, and
Davis
,
C. L.
,
2010
, “
Mechanical Property Development During UOE Forming of Large Diameter Pipeline Steels
,”
Mater. Manuf. Processes
,
25
(
1–3
), pp.
41
47
.10.1080/10426910903202542
19.
Ratnapuli
,
R.
, and
Rodrigues
,
E.
,
1982
, “
Bauschinger Effect in API X60 Linepipe Steels
,”
Met. Technol.
,
9
(
1
), pp.
440
445
.10.1179/030716982803286313
20.
Khadeev
,
G.
,
Ringinen
,
D.
, and
Efron
,
L.
,
2016
, “
Effect of Multistage Deformation During the Pipe Processing on Mechanical Properties of Steels Strength Grade X70-X80
,”
Key Eng. Mater.
,
716
, pp.
957
962
.10.4028/www.scientific.net/KEM.716.957
21.
Hillenbrand
,
H.-G.
,
Liessem
,
A.
,
Knauf
,
G.
,
Niederhoff
,
K.
, and
Bauer
,
J.
,
2000
, “
Development of Large-Diameter Pipe in Grade X100
,”
Pipeline Technology Conference
,
Brugge, Belgium
, May 21–24.
22.
Kostryzhev
,
A. G.
,
2009
, “Bauschinger Effect in Nb and V Microalloyed Line Pipe Steels,”
University of Birmingham
,
Birmingham, UK
.
23.
Yoo
,
J.-Y.
,
Ahn
,
S.-S.
,
Seo
,
D.-H.
,
Song
,
W.-H.
, and
Kang
,
K.-B.
,
2011
, “
New Development of High Grade X80 to X120 Pipeline Steels
,”
Mater. Manuf. Processes
,
26
(
1
), pp.
154
160
.10.1080/10426910903202534
24.
Streisselberger
,
A.
,
Bauer
,
J.
,
Bergmann
,
B.
, and
Schutz
,
W.
,
1992
, “
Correlation of Pipe to Plate Properties–Model Calculations and Application in the Design of X 80 Line Pipe Steels
,”
International Conference on Pipeline Reliability
, Calgary, AB, Canada, June 2–5, pp. 3.3.1–3.3.13.
25.
Cooreman
,
S. D.
,
Van Hoecke
,
M.
,
Liebeherr
,
P.
,
Thibaux
, and
Enderlin
,
M. Y.
,
2014
, “
Measurement of Mechanical Properties on Line Pipe: Comparison of Different Methodologies
,”
ASME
Paper No. IPC2014-33520.10.1115/IPC2014-33520
26.
Hashemi
,
S.
,
2011
, “
Strength–Hardness Statistical Correlation in API X65 Steel
,”
Mater. Sci. Eng.: A
,
528
(
3
), pp.
1648
1655
.10.1016/j.msea.2010.10.089
27.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
28.
Jiao
,
J.
,
Lu
,
C.
,
Lee
,
C. S.
,
Bae
,
J. H.
, and
Barbaro
,
F.
,
2020
, “
Introduction of the Delta Concept for Characterising Pipe Yield Strength
,”
Int. J. Mater. Form.
,
13
(
4
), pp.
623
637
.10.1007/s12289-019-01501-7
29.
Pedersen
,
O. B.
,
Brown
,
L.
, and
Stobbs
,
W.
,
1981
, “
The Bauschinger Effect in Copper
,”
Acta Metall.
,
29
(
11
), pp.
1843
1850
.10.1016/0001-6160(81)90110-3
30.
Bate
,
P.
, and
Wilson
,
D.
,
1986
, “
Analysis of the Bauschinger Effect
,”
Acta Metall.
,
34
(
6
), pp.
1097
1105
.10.1016/0001-6160(86)90220-8
31.
Demir
,
E.
, and
Raabe
,
D.
,
2010
, “
Mechanical and Microstructural Single-Crystal Bauschinger Effects: Observation of Reversible Plasticity in Copper During Bending
,”
Acta Mater.
,
58
(
18
), pp.
6055
6063
.10.1016/j.actamat.2010.07.023
32.
Hemmerich
,
E.
,
Rolfe
,
B.
,
Hodgson
,
P.
, and
Weiss
,
M.
,
2011
, “
The Effect of Pre-Strain on the Material Behaviour and the Bauschinger Effect in the Bending of Hot Rolled and Aged Steel
,”
Mater. Sci. Eng.: A
,
528
(
9
), pp.
3302
3309
.10.1016/j.msea.2010.12.035
You do not currently have access to this content.