Abstract

Due to inevitable inner leakage in hydraulic circuits and structural limits of a hydraulically interconnected suspension (HIS) system, pressure difference between HIS's two independent hydraulic circuits leads to vehicular unbalance under noncornering driving conditions and deteriorates HIS's performance under steering driving conditions. In order to address this problem, a new bidirectional pressure-regulating valve was designed to balance hydraulic pressures in the two HIS's hydraulic circuits under noncornering driving conditions. Moreover, it separates the two hydraulic circuits and enables HIS's antirollover function under cornering driving conditions. Detailed structure and functions of this valve were introduced first. Systematic and computational fluid dynamics (CFD) simulation results show that the gap between the spool and cylinder is of importance to valve's performance. Experimental results validate that the developed valve satisfies all requirements of the HIS. Furthermore, the valve can distinguish steering and nonsteering conditions and enables HIS's function accurately without any pressure shock.

References

References
1.
Arana
,
C.
,
Evangelou
,
S. A.
, and
Dini
,
D.
,
2015
, “
Series Active Variable Geometry Suspension for Road Vehicles
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
361
372
.10.1109/TMECH.2014.2324013
2.
Hu
,
Y.
,
Chen
,
M. Z. Q.
, and
Sun
,
Y.
,
2017
, “
Comfort-Oriented Vehicle Suspension Design With Skyhook Inerter Configuration
,”
J. Sound Vib.
,
405
, pp.
34
47
.10.1016/j.jsv.2017.05.036
3.
Odenthal
,
D.
,
Bünte
,
T.
, and
Ackermann
,
J.
,
1999
, “
Nonlinear Steering and Braking Control for Vehicle Rollover Avoidance
,”
European Control Conference (ECC)
,
Karlsruhe, Germany
, Aug. 31–Sept. 3, pp.
598
603
.10.23919/ECC.1999.7099370
4.
Wu
,
Q.
,
Zhang
,
G.
,
Chen
,
C.
,
Tarefder
,
R.
,
Wang
,
H.
, and
Wei
,
H.
,
2016
, “
Heterogeneous Impacts of Gender-Interpreted Contributing Factors on Driver Injury Severities in Single-Vehicle Rollover Crashes
,”
Accident Anal. Prev.
,
94
, pp.
28
34
.10.1016/j.aap.2016.04.005
5.
Zhang
,
X.
,
Yang
,
Y.
,
Guo
,
K.
,
Lv
,
J.
, and
Peng
,
T.
,
2017
, “
Contour Line of Load Transfer Ratio for Vehicle Rollover Prediction
,”
Veh. Syst. Dyn.
,
55
(
11
), pp.
1748
1763
.10.1080/00423114.2017.1321773
6.
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2015
, “
State of the Art Survey: Active and Semi-Active Suspension Control
,”
Veh. Syst. Dyn.
,
53
(
7
), pp.
1034
1062
.10.1080/00423114.2015.1037313
7.
Li
,
Z.
,
Sun
,
W.
, and
Gao
,
H.
,
2019
, “
Road-Holding-Oriented Control and Analysis of Semi-Active Suspension Systems
,”
ASME J. Dyn. Sys., Meas., Control
,
141
(
10
), p. 101010.10.1115/1.4043764
8.
Cao
,
D.
,
Song
,
X.
, and
Ahmadian
,
M.
,
2011
, “
Editors' Perspectives: Road Vehicle Suspension Design, Dynamics, and Control
,”
Veh. Syst. Dyn.
,
49
(
1–2
), pp.
3
28
.10.1080/00423114.2010.532223
9.
Zhang
,
H.
,
Zheng
,
X.
,
Yan
,
H.
,
Peng
,
C.
,
Wang
,
Z.
, and
Chen
,
Q.
,
2017
, “
Codesign of Event-Triggered and Distributed H∞ Filtering for Active Semi-Vehicle Suspension Systems
,”
IEEE/ASME Trans. Mechatronics
,
22
(
2
), pp.
1047
1058
.10.1109/TMECH.2016.2646722
10.
Smith
,
W. A.
, and
Smith
,
W. A.
,
2010
, “
Recent Developments in Passive Interconnected Vehicle Suspension
,”
Front. Mech. Eng.
,
5
(
1
), pp.
1
18
.10.1007/s11465-009-0092-z
11.
Sharp
,
R. S.
, and
Crolla
,
D. A.
,
1987
, “
Road Vehicle Suspension System Design—A Review
,”
Veh. Syst. Dyn.
,
16
(
3
), pp.
167
192
.10.1080/00423118708968877
12.
Zhang
,
N.
,
Smith
,
W. A.
, and
Jeyakumaran
,
J.
,
2010
, “
Hydraulically Interconnected Vehicle Suspension: Background and Modelling
,”
Veh. Syst. Dyn.
,
48
(
1
), pp.
17
40
.10.1080/00423110903243182
13.
Awad
,
M. N.
,
Sokar
,
M. I.
,
Rabbo
,
S. A.
, and
El-Arabi
,
M. E.
,
2018
, “
Performance Evaluation and Damping Characteristics of Hydro-Pneumatic Regenerative Suspension System
,”
Int. J. Appl. Eng. Res.
,
13
(
7
), pp.
5436
5442
.https://www.ripublication.com/ijaer18/ijaerv13n7_120.pdf
14.
Chindamo
,
D.
,
Gadola
,
M.
, and
Marchesin
,
F. P.
,
2017
, “
Reproduction of Real-World Road Profiles on a Four-Poster Rig for Indoor Vehicle Chassis and Suspension Durability Testing
,”
Adv. Mech. Eng.
,
9
(
8
), pp.
1
10
.10.1177/1687814017726004
15.
Zhu
,
S.
,
2016
, “
An Investigation Into the Roll Control of Vehicles With Hydraulically Interconnected Suspensions
,”
Ph.D. thesis
,
University of Technology
, Sydney.https://www.semanticscholar.org/paper/An-investigation-into-the-roll-control-of-vehicles-Zhu/724953cb4419b6e17a1fae1b159309845eecccad
16.
Zhang
,
N.
,
Wang
,
L.
, and
Du
,
H.
,
2014
, “
Motion-Mode Energy Method for Vehicle Dynamics Analysis and Control
,”
Veh. Syst. Dyn.
,
52
(
1
), pp.
1
25
.10.1080/00423114.2013.847468
17.
Du
,
H.
,
Zhang
,
N.
, and
Wang
,
L.
,
2014
, “
Switched Control of Vehicle Suspension Based on Motion-Mode Detection
,”
Veh. Syst. Dyn.
,
52
(
1
), pp.
142
165
.10.1080/00423114.2013.866258
18.
Smith
,
W. A.
,
Zhang
,
N.
, and
Hu
,
W.
,
2011
, “
Hydraulically Interconnected Vehicle Suspension: Handling Performance
,”
Veh. Syst. Dyn.
,
49
(
1–2
), pp.
87
106
.10.1080/00423111003596743
19.
Smith
,
W. A.
,
Zhang
,
N.
, and
Jeyakumaran
,
J. M.
,
2010
, “
Hydraulically Interconnected Vehicle Suspension: Theoretical and Experimental Ride Analysis
,”
Veh. Syst. Dyn.
,
48
(
1
), pp.
41
64
.10.1080/00423110903243190
You do not currently have access to this content.