Abstract

The simplified theory of plastic zones (STPZ) was mainly developed to determine strain ranges and accumulated strains in the state of shakedown at cyclic loading between prescribed levels of loading. Kinematic hardening is an indispensable feature of the STPZ. The plastic limit load, however, is defined for monotonic loading and elastic–plastic material behavior without hardening. Simply assigning a zero value or a numerically very low value of the tangent modulus when applying the STPZ is generally not possible due to arising numerical instabilities. It is, therefore, not immediately obvious how the STPZ can be used to determine the maximum load level that can be applied to a structure without developing a kinematic mechanism. This paper describes the theory and the analysis steps required and provides some illustrative examples. Typically, between one and three linear elastic analyses and some local calculations are required to provide either the exact value or at least a reasonable estimate of a range of the plastic limit load, as well as of the associated stress and strain fields and displacements that are not provided by classical limit analysis.

References

1.
Hübel
,
H.
,
2015
, “
Simplified Theory of Plastic Zones for Cyclic Loading and Multilinear Hardening
,”
Int. J. Pressure Vessels Piping
,
129–130
, pp.
19
31
.10.1016/j.ijpvp.2015.03.002
2.
Hübel
,
H.
,
2016
,
Simplified Theory of Plastic Zones
,
Springer International Publishing
, Cham,
Switzerland
.
3.
Zarka
,
J.
,
Frelat
,
J.
,
Inglebert
,
G.
, and
Kasmai-Navidi
,
P.
,
1990
,
A New Approach to Inelastic Analyses of Structures
,
Martinus Nijhoff Publishers
, Dordrecht, The Netherlands.
4.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
,
1992
, “
Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,”
ASME J. Pressure Vessel Technol.
,
114
(
2
), pp.
201
208
.10.1115/1.2929030
5.
Mackenzie
,
D.
,
Boyle
,
J. T.
, and
Hamilton
,
R.
,
2000
, “
The Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Anal. Eng. Des.
,
35
(
3
), pp.
171
188
.10.1243/0309324001514332
6.
Ponter
,
A. R. S.
, and
Carter
,
K. F.
,
1997
, “
Shakedown State Simulation Techniques Based on Linear Elastic Solutions
,”
Comput. Methods Appl. Mech. Eng.
,
140
(
3–4
), pp.
259
279
.10.1016/S0045-7825(96)01105-X
7.
Chen
,
H.
,
2010
, “
Linear Matching Method for Design Limits in Plasticity
,”
Computers Materials & Continua
,
20
(
2)
, pp.
159
183
.10.3970/cmc.2010.020.159
8.
Pisano
,
A. A.
,
Fuschi
,
P.
, and
De Domenico
,
D.
, 2015, “
Limit Analysis on RC-Structures by a Multi-Yield-Criteria Numerical Approach
,”
Direct Methods for Limit and Shakedown Analysis of Structures
,
P.
Fuschi
, ed.,
Springer International Publishing
, Cham,
Switzerland
.10.1007/978-3-319-12928-0_11
9.
Rohart
,
P.
,
Panier
,
S.
,
Hariri
,
S.
,
Simonet
,
Y.
, and
Afzali
,
M.
,
2015
, “
Contribution to Pressure Vessels Design of Innovative Methods and Comparative Application With Standardized Rules on Realistic Structures—Part I
,”
Int. J. Pressure Vessels Piping
,
134
, pp.
25
32
.10.1016/j.ijpvp.2015.08.005
10.
Maier
,
G.
,
Comi
,
C.
,
Corigliani
,
A.
,
Perego
,
U.
, and
Hübel
,
H.
,
1992
, “
Bounds and Estimates on Inelastic Deformations, Commission of the European Communities
,” European Commission, Brussels, Belgium, Report No. EUR 16555 EN.
11.
Jospin
,
R. J.
,
1997
, “
Displacement Estimates of Pipe Elbows Prior to Plastic Collapse Loads
,”
Nucl. Eng. Des.
,
178
(
2
), pp.
165
178
.10.1016/S0029-5493(97)00220-3
12.
Hübel
,
H.
,
Willuweit
,
A.
,
Rudolph
,
J.
,
Ziegler
,
R.
,
Lang
,
H.
,
Rother
,
K.
, and
Deller
,
S.
,
2014
, “
Performance Study of the Simplified Theory of Plastic Zones and the Twice-Yield Method for the Fatigue Check
,”
Int. J. Pressure Vessels Piping
,
116
, pp.
10
19
.10.1016/j.ijpvp.2014.01.003
13.
Schimmöller
,
H.
,
2012
, “
Analytische Behandlung von Eigenspannungszuständen auf der Grundlage der Elastizitätstheorie
,” Schriftenreihe Schiffbau, TU Hamburg-Harburg, Hamburg, Germany, accessed Jan. 18, 2021, https://tore. tuhh.de/bitstream/11420/957/1/Bericht_Nr.524_H.Schimmoeller_Analytische_ Behandlung_von_Eigenspannungszustnden_auf_der_Grundlage_der_Elastizitt stheorie.pdf
14.
Mellati
,
A.
,
Tangaramvong
,
S.
,
Tin-Loi
,
F.
, and
Song
,
C.
,
2015
, “
Iterative Limit Analysis of Structures With a Scaled Boundary Finite Element Framework
,”
XIII International Conference on Computational Plasticity, Fundamentals and Applications
, Barcelona, Spain, Sept. 1–3, pp.
864
873
.
You do not currently have access to this content.