Abstract

The pipeline transport system (PTS) is a means of land and marine transport, reliable in the oil sector as well as in various industries, considering its economy and speed to transport a product. The instability of this system, though, currently takes several variables, which directly affect the mechanical integrity (MI) of the same, due to the imminent internal and external formation of the phenomenon classified as corrosion (C). To address this problem, fault tolerance control techniques (FTCS), global positioning systems (GPS), and artificial intelligence (AI), are useful tools to deal with uncertainty and minimize subjectivity, through system modeling. That will allow the identification, control, and timely monitoring of risk factors. During the last 30 years, important contributions on corrosion to pipelines in the oil and gas industry have been published. This document aims to build a systematic literary review (SLR), from an integrative perspective, recognizing various studies in the periods 1987–2018, analyzing 245 documents, from three posts previously not addressed together within the context of corrosion to PTS, offering an apology if any document relevant to the subject was excluded from the work. Findings about the topics of analysis, discussions, and future lines of research are described.

References

1.
OPEC, 2018, OPEC Crude Oil Price Statistics Annually 1960–2018, Statistic, Vienna, Austria.
2.
Kotler, P., 2012, “Marketing Management/Pearson Educ Int. 2012,” Pearson Educ. Int., New York.
3.
Hart, E., 2016, Corrosion Inhibitors: Principles, Mechanisms and Applications, Nova Science Publishers, Inc., New York.
4.
Wee, B. V., and Banister, D., 2016, “How to Write a Literature Review Paper?,”
Transp. Rev.
, 36, pp. 278–288.10.1080/01441647.2015.1065456
5.
Tranfield
,
D. C.
,
Denyer
,
D. C.
, and
Smart
,
P.
,
2003
, “
Towards a Methodology for Evidence-Based Management by D Tranfield D Denyer and P Smart 2003
,”
Br. Acad. Manag.
, 14, pp.
207
222
. https://www.cebma.org/wp-content/uploads/Tranfield-et-al-Towards-a-Methodology-for-Developing-Evidence-Informed-Management.pdf
6.
Mayring
,
P.
,
2015
, “
Qualitative Content Analysis: Theoretical Background and Procedures
,”
Approaches to Qualitative Research in Mathematics Education
, New York.
7.
López
,
D. A.
,
Schreiner
,
W. H.
,
de Sánchez
,
S. R. R.
, and
Simison
,
S. N.
,
2003
, “
The Influence of Carbon Steel Microstructure on Corrosion Layers
,”
Appl. Surf. Sci.
, 207(1–4), pp.
69
85
. 10.1016/S0169-4332(02)01218-7
8.
Turnbull
,
A.
,
Slavcheva
,
E.
, and
Shone
,
B.
,
1998
, “
Factors Controlling Naphthenic Acid Corrosion
,”
Corros.
,
54
(
11
), pp.
922
930
.10.5006/1.3284811
9.
Mackay, B., Jackson, J. E., Melot, D., Scheie, J., and Vittonato, J., 2016, “La Corrosión: La Lucha Más Extensa,” Oilf. Rev. 28, 28(2), pp. 36–51.
10.
Eckert
,
R. B.
, and
Skovhus
,
T. L.
,
2016
, “
Advances in the Application of Molecular Microbiological Methods in the Oil and Gas Industry and Links to Microbiologically Influenced Corrosion
,”
Int. Biodeterior. Biodegrad.
, 126, pp.
169
176
.10.1016/j.ibiod.2016.11.019
11.
Braswell
,
G.
,
2013
, “
Artificial Intelligence Comes of Age in Oil and Gas
,”
J. Pet. Technol.
, 65(1), pp.
50
57
. 10.2118/0113-0050-JPT
12.
Cao
,
A. L.
,
Zhu
,
Q. J.
,
Zhang
,
S. T.
, and
Hou
,
B. R.
,
2010
, “
BP Neural Network Predictive Model for Stray Current Density of a Buried Metallic Pipeline
,”
Anti-Corros. Methods Mater.
, 57(5), pp.
234
237
.https://www.emerald.com/insight/content/doi/10.1108/00035591011075869/full/html
13.
Biezma
,
M. V.
,
Agudo
,
D.
, and
Barron
,
G.
,
2018
, “
A Fuzzy Logic Method: Predicting Pipeline External Corrosion Rate
,”
Int. J. Pressure Vessels Piping
, 163, pp.
55
62
.10.1016/j.ijpvp.2018.05.001
14.
Taleb-Berrouane
,
M.
,
Khan
,
F.
,
Hawboldt
,
K.
,
Eckert
,
R.
, and
Skovhus
,
T. L.
,
2018
, “
Model for Microbiologically Influenced Corrosion Potential Assessment for the Oil and Gas Industry
,”
Corros. Eng. Sci. Technol.
, 53(5), pp.
378
392
.10.1080/1478422X.2018.1483221
15.
Canyurt
,
O. E.
, and
Ozturk
,
H. K.
,
2008
, “
Application of Genetic Algorithm (GA) Technique on Demand Estimation of Fossil Fuels in Turkey
,”
Energy Policy
,
36
(
7
), pp.
2562
2569
.10.1016/j.enpol.2008.03.010
16.
Shabarchin
,
O.
, and
Tesfamariam
,
S.
,
2017
, “
Risk Assessment of Oil and Gas Pipelines With Consideration of Induced Seismicity and Internal Corrosion
,”
J. Loss Prev. Process Ind.
, 47, pp.
85
94
.10.1016/j.jlp.2017.03.002
17.
Shen
,
L.
, and
Stopher
,
P. R.
,
2014
, “
Review of GPS Travel Survey and GPS Data-Processing Methods
,”
Transp. Rev.
, 34(3), pp.
316
334
.10.1080/01441647.2014.903530
18.
Kermani
,
B.
, and
Harrop
,
M. D.
,
1996
, “
The Impact of Corrosion on Oil and Gas Industry
,”
SPE Prod. Oper.
, 11(3), pp.
186
190
. 10.2118/29784-PA
19.
Papavinasam
,
S.
,
2014
,
Corrosion Control in the Oil and Gas Industry
, Amsterdam, The Netherlands.
20.
Luo
,
J.
,
Zhang
,
L.
,
Li
,
L.
,
Yang
,
F.
,
Ma
,
W.
,
Wang
,
K.
, and
Zhao
,
X.
,
2016
, “
Electrochemical Corrosion Behaviors of the X90 Linepipe Steel in NS4 Solution
,”
Nat. Gas Ind.
, 36(6), pp.
92
97
.10.1016/j.ngib.2016.12.011
21.
Vieira
,
R. E.
,
Kesana
,
N. R.
,
Shirazi
,
S. A.
, and
Mclaury
,
B. S.
,
2014
, “
Experiments for Sand Erosion Model Improvement for Elbows in Gas Production, Low-Liquid Loading and Annular Flow Conditions
,”
Corrosion 2014
, Nace, TX, p. 20.https://www.researchgate.net/publication/267450558_Experiments_for_Sand_Erosion_Model_Improvement_for_Elbows_in_Gas_Production_Low-Liquid_Loading_and_Annular_Flow_Conditions
22.
Ibeawuchi
,
I.
,
2013
, “
Review Applications to Prevent Corrosion Reducing Gas Pipe Line
,”
Int. J. Chem.
, 1(2), pp.
409
414
.10.17142/IJBAS-2012.1.2.29
23.
Tuttle
,
R. N.
,
1987
, “
Corrosion in Oil and Gas Production
,”
J. Pet. Technol.
, 39(7), pp.
756
762
.
24.
Han, J., Yang, Y., Bruce, B., and Nesic, S., 2007, “Electrochemical Investigation of Localized CO2 Corrosion on Mild Steel,”
NACE International - Conference & Expo
, Nace, TX, pp. 073231–0732325.https://www.onepetro.org/conference-paper/NACE-07323
25.
Bilkova, K., Hackerman, N., and Bartos, M., 2002, “Electochemical Characterization of an Al-Zn-In Galvanic Anode M.A.,” Nace, NACE International, Houston, TX, p. 11.
26.
Groysman
,
A.
,
2017
, “
Corrosion Problems and Solutions in Oil, Gas, Refining and Petrochemical Industry
,”
Koroze Ochr. Mater.
, 61(3), pp.
100
117
.10.1515/kom-2017-0013
27.
Bhavsar
,
R. B.
,
Collins
,
A.
, and
Silverman
,
S.
,
2001
, “
Use of Alloy 718 and 725 in Oil and Gas Industry
,”
Superalloys 718, 625, 706 Various Derivatives (2001)
, Pittsburgh, PA.10.7449/2001/Superalloys_2001_47_55
28.
Nasirpouri
,
F.
,
Mostafaei
,
A.
,
Fathyunes
,
L.
, and
Jafari
,
R.
,
2014
, “
Assessment of Localized Corrosion in Carbon Steel Tube-Grade AISI 1045 Used in Output Oil-Gas Separator Vessel of Desalination Unit in Oil Refinery Industry
,”
Eng. Fail. Anal.
, 40, pp.
75
88
.10.1016/j.engfailanal.2014.02.012
29.
Ayello
,
F.
,
Jain
,
S.
,
Sridhar
,
N.
, and
Koch
,
G. H.
,
2014
, “
Quantitative Assessment of Corrosion Probability—A Bayesian Network Approach
,”
Corros.
,
70
(
11
), pp.
1128
1147
.10.5006/1226
30.
Sastri
,
V. S.
,
2015
,
Challenges in Corrosion: Costs, Causes, Consequences, and Control
, Wiley, Hoboken, NJ.
32.
Abd El-Lateef
,
H. M.
,
Abbasov
,
V. M.
,
Aliyeva
,
L. I.
, and
Ismayilov
,
T. A.
,
2012
, “
Corrosion Protection of Steel Pipelines Against CO2 Corrosion-A Review
,”
Chem. J.
, 2(2), pp.
52
63
.https://www.researchgate.net/publication/267557833_Corrosion_Protection_of_Steel_Pipelines_Against_CO_2_Corrosion-A_Review
33.
Brondel, D., Edwards, R., Hayman, A., Hill, D., and Semerad, T., 1994, “Corrosion in the Oil Industry,”
Oilf. Rev
., 28(8), pp. 898–903.https://www.slb.com/-/media/files/oilfield-review/p04-18
34.
Gao
,
M.
,
Pang
,
X.
, and
Gao
,
K.
,
2011
, “
The Growth Mechanism of CO2 Corrosion Product Films
,”
Corros. Sci.
, 53(2), pp.
557
568
.10.1016/j.corsci.2010.09.060
35.
Javaherdashti
,
R.
,
Nwaoha
,
C.
, and
Tan
,
H.
,
2013
, “
Corrosion and Materials in the Oil and Gas Industries
,” Taylor & Francis, Boca Raton, FL.
36.
Kermani
,
M. B.
, and
Morshed
,
A.
,
2003
, “
Carbon Dioxide Corrosion in Oil and Gas Production—A Compendium
,”
Corros.
,
59
(
8
), pp.
659
683
.10.5006/1.3277596
37.
Perez
,
T. E.
,
2013
, “
Corrosion in the Oil and Gas Industry: An Increasing Challenge for Materials
,”
JOM
,
65
(
8
), pp.
1033
1042
.10.1007/s11837-013-0675-3
38.
Smith
,
L.
,
1999
, “
Control of Corrosion in Oil and Gas Production Tubing
,”
Br. Corros. J.
, 34(4), pp.
247
253
. https://www.nickelinstitute.org/media/1649/controlofcorrosioninoilandgasproductiontubing_14052_.pdf
39.
Bahadori
,
A.
,
2015
,
Essentials of Coating, Painting, and Lining for the Oil, Gas and Petrochemical Industries
, Elsevier, New York.
40.
Speight
,
J. G.
,
2014
,
Oil and Gas Corrosion Prevention: From Surface Facilities to Refineries
, Gulf Professional Publishing, Houston, TX.
41.
Tiu
,
B. D. B.
, and
Advincula
,
R. C.
,
2015
, “
Polymeric Corrosion Inhibitors for the Oil and Gas Industry: Design Principles and Mechanism
,”
React. Funct. Polym.
, 95, pp.
25
45
.10.1016/j.reactfunctpolym.2015.08.006
42.
Fakoya
,
M. F.
, and
Shah
,
S. N.
,
2017
, “
Emergence of Nanotechnology in the Oil and Gas Industry: Emphasis on the Application of Silica Nanoparticles
,”
Petroleum
,
3
(
4
), pp.
391
405
.10.1016/j.petlm.2017.03.001
43.
Fuentes
,
C.
, and
Peña
,
D.
,
2007
, “
Predicción de la Corrosión POR CO2 + H2S EN Tuberias de Acero al Carbono
,”
Sci. Tech.
, Año XIII, 4(36), pp.
881
886
.
44.
Suflita
,
J. M.
,
Phelps
,
T. J.
, and
Little
,
B.
,
2008
, “
Carbon Dioxide Corrosion and Acetate: A Hypothesis on the Influence of Microorganisms
,”
Corros.
,
64
(
11
), pp.
854
859
.10.5006/1.3279919
45.
Sun
,
W.
,
Nešić
,
S.
,
Young
,
D.
, and
Woollam
,
R. C.
,
2008
, “
Equilibrium Expressions Related to the Solubility of the Sour Corrosion Product Mackinawite
,”
Ind. Eng. Chem. Res.
,
47
(
5
), pp.
1738
1742
.10.1021/ie070750i
46.
Carlos
,
A.
,
Melgarejo
,
P.
, and L. F. M. M. S. N. R. C.,
2007
, “Study of the Corrosion Rate of an AISI-SAE 1020 Steel in a System Brine-Oil-CO2-H2S by Using a Rotating Cylinder Electrode (ECR) and a Loop,”
Sci. Tech
., Año XIII, pp.
151
156
.
47.
Laoun
,
B.
,
Niboucha
,
K.
, and
Serir
,
L.
,
2008
, “
Cathodic Protection of a Buried Pipeline by Solar Energy
,”
Rev. Energies Renouvelables
, 12(2008), pp.
1
99
.https://www.researchgate.net/publication/242293686_Cathodic_protection_of_a_buried_pipeline_by_solar_energy
48.
Hardwicke
,
C. U.
, and
Lau
,
Y. C.
,
2013
, “
Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review
,”
J. Therm. Spray Technol.
, 22, pp.
564
576
.https://link.springer.com/article/10.1007/s11666-013-9904-0
49.
Popoola
,
L. T.
,
Grema
,
A. S.
,
Latinwo
,
G. K.
,
Gutti
,
B.
, and
Balogun
,
A. S.
,
2013
, “
Corrosion Problems During Oil and Gas Production and Its Mitigation
,”
Int. J. Ind. Chem.
, 4, p.
35
.https://link.springer.com/article/10.1186/2228-5547-4-35
50.
Muthukumar
,
N.
,
2014
, “
Petroleum Products Transporting Pipeline Corrosion-A Review
,”
Role Colloidal Syst. Environ. Prot.
, pp.
527
571
.10.1016/B978-0-444-63283-8.00021-1
51.
Gayosso
,
M. J. H.
,
Olivares
,
G. Z.
,
Ordaz
,
N. R.
,
Ramirez
,
C. J.
,
Esquivel
,
R. G.
, and
Viveros
,
A. P.
,
2004
, “
Microbial Consortium Influence Upon Steel Corrosion Rate, Using Polarisation Resistance and Electrochemical Noise Techniques
,”
Electrochim. Acta
, 49(25), pp.
4295
4301
.10.1016/j.electacta.2004.03.038
52.
De Turris
,
S. A. J.
,
De Romero
,
M. F.
,
Papavinasam
,
S.
, and
Ocando
,
L.
,
2013
, “
Effecto Sinérgico de Las Bacterias Sulfato-Reductoras y El CO2 en Agua de Producción Sobre La Corrosión Del Acero Al Carbono
,”
Interciencia
, 38(3), pp.
209
214
.
53.
Enning
,
D.
, and
Garrelfs
,
J.
,
2014
, “
Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem
,”
Appl. Environ. Microbiol.
,
80
(
4
), pp.
1226
1236
.10.1128/AEM.02848-13
54.
Muthukumar
,
N.
,
Rajasekar
,
A.
,
Ponmariappan
,
S.
,
Mohanan
,
S.
,
Maruthamuthu
,
S.
,
Muralidharan
,
S.
,
Subramanian
,
P.
,
Palaniswamy
,
N.
, and
Raghavan
,
M.
,
2003
, “
Microbiologically Influenced Corrosion in Petroleum Product Pipelines-A Review
,”
Indian J. Exp. Biol.
, 41(9), pp.
12
22
.https://pubmed.ncbi.nlm.nih.gov/15242294/#:~:text=Microbiologically%20influenced%20corrosion%20is%20responsible,transportation%20pipelines%20and%20storage%20tanks.&text=Many%20of%20the%20misapplication%20of,before%20use%20in%20pipeline%20industry.
55.
AlAbbas
,
F. M.
,
Spear
,
J. R.
,
Kakpovbia
,
A. E.
,
Balhareth
,
N. M.
,
Olson
,
D. L.
, and
Mishra
,
B.
,
2012
, “
Bacterial Attachment to Metal Substrate and Its Effects on Microbiologically-Influenced Corrosion in Transport in Hydrocarbon Pipelines
,”
J. Pipeline Eng.
, 11(1), pp.
63
72
.10.1002/9781118511466.ch14
56.
Eckert
,
R. B.
,
2015
, “
Emphasis on Biofilms Can Improve Mitigation of Microbiologically Influenced Corrosion in Oil and Gas Industry
,”
Corros. Eng. Sci. Technol.
, 50(3), pp.
163
168
.10.1179/1743278214Y.0000000248
57.
Skovhus
,
T. L.
,
Eckert
,
R. B.
, and
Rodrigues
,
E.
,
2017
, “
Management and Control of Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry—Overview and a North Sea Case Study
,”
J. Biotechnol.
, 256, pp.
31
45
.10.1016/j.jbiotec.2017.07.003
58.
Speight
,
J. G.
,
2014
,
Oil and Gas Corrosion Prevention
, Elsevier, San Diego, CA.
59.
European Federation of Corrosion
,
1991
, “
European Federation of Corrosion Publications NUMBER 9 a Working Party Report on Microbiological Degradation of Materials and Methods of Protection
,” Brusseles, Belgium.
60.
Turnbull
,
A.
,
Hinds
,
G.
,
Cooling
,
P.
, and
Zhou
,
S.
,
2009
, “
A Multi-Electrode Approach to Evaluating Inhibition of Underdeposit Corrosion in CO2 Environments
,”
Corrosion 2009, NACE international, Atlanta, GA, Mar. 22–26, p. 16.
61.
Hairil Mohd
,
M.
, and
Paik
,
J. K.
,
2013
, “
Investigation of the Corrosion Progress Characteristics of Offshore Subsea Oil Well Tubes
,”
Corros. Sci.
, 67, pp. 130–141.10.1016/j.corsci.2012.10.008
62.
Ossai
,
C. I.
,
2012
, “
Advances in Asset Management Techniques: An Overview of Corrosion Mechanisms and Mitigation Strategies for Oil and Gas Pipelines
,”
ISRN Corros.
,
2012
(
2012
), pp.
1
10
.10.5402/2012/570143
63.
Nyborg
,
R.
,
2010
, “
CO2 Corrosion Models for Oil and Gas Production Systems
,”
Corros. 2010
, 24(8), pp. 7–9.https://www.onepetro.org/conference-paper/NACE-10371
64.
de Waard
,
C.
,
Lotz
,
U.
, and
Dugstad
,
A.
,
1995
, “
Influence of Liquid Flow Velocity on CO2 Corrosion: A Semi-Empirical Model
,”
National Association of Corrosion Engineers (NACE) International Annual Conference and Corrosion Show
, Orlando, FL, Mar. 26–31.https://www.osti.gov/biblio/106125-influence-liquid-flow-velocity-co-sub-corrosion-semi-empirical-model
65.
de Waard
,
C.
,
Lotz
,
U.
, and
Milliams
,
D. E.
,
1991
, “
Predictive Model for CO2 Corrosion Engineering in Wet Natural Gas Pipelines
,”
Corros.
,
47
(
12
), pp.
976
985
.10.5006/1.3585212
66.
Olsen
,
S.
,
Halvorsen
,
A. M. K.
,
Lunde
,
P. G.
, and
Nyborg
,
R.
,
2005
, “
CO2 Corrosion Prediction Model—Basic Principles
,” Corrosion 2005,
NACE International
, Houston, TX, Apr. 3–7, p. 13.https://www.onepetro.org/conference-paper/NACE-05551
67.
Pots
,
B. F.
, and
Kapusta
,
S. D.
,
2005
, “
Prediction of Corrosion Rates of the Main Corrosion Mechanisms in Upstream Applications
,” Corrosion 2005,
NACE international
, Houston, TX, Apr. 3–7, p. 21.https://www.onepetro.org/conference-paper/NACE-05550
68.
Hedges
,
B.
,
2000
, “
The Corrosion Inhibitor Availability Model
,” Corrosion 2000,
NACE International
, Orlando, FL, Mar. 26–31, p. 13.https://www.onepetro.org/conference-paper/NACE-00034
69.
Nesic, S., Postlethwaite, J., and Olsen, S., 1996, “An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions,”
Corros.
, 52(4), pp. 280–294.http://www.icmt.ohio.edu/documents/publications/8183.pdf
70.
Nešić
,
S.
,
Cai
,
J.
, and
Lee
,
K. J.
,
2005
, “
A Multiphase Flow and Internal Corrosion Prediction Model for Mild Steel Pipelines
,” Corrosion 2005,
NACE international
, Houston, TX, Apr. 3–7, p. 35.https://www.onepetro.org/conference-paper/NACE-05556
71.
Smith
,
L.
, and
de Waard
,
C.
,
2005
, “
Corrosion Prediction and Materials Selection for Oil and Gas Producing Environments
,” Corrosion 2005,
NACE international
, Houston, TX, Apr. 3–7, p. 14.https://www.onepetro.org/conference-paper/NACE-05648
72.
Adsani, E., Shirazi, S. A., Shadley, J. R., and Rybicki, E. F., 2006, “Validation of Mass Transfer Coefficient Models Used in Predicting CO2 Corrosion in Vertical Two-Phase Flow in the Oil and Gas Production,” Corrosion 2006,
NACE international
, San Diego, CA, Mar. 12–16, p. 12.https://www.onepetro.org/conference-paper/NACE-06573
73.
Gartland, P. O., Johnsen, R., and Øvstetun, I., 2003, “Application of Internal Corrosion Modeling in the Risk Assessment of Pipelines,”
Corros. NACE Int., 2003/01/01
, San Diego, CA, Mar. 16–20, pp. 1–14.https://www.onepetro.org/conference-paper/NACE-03179
74.
Gartland, P. O., Johnsen, R., and Øvstetun, I., 2003, “Application of Internal Corrosion Modeling in the Risk Assessment of Pipelines,”
Corros. NACE Int., 2003/01/01
, pp. 1–14.
75.
Anderko
,
A.
,
2000
, “
Simulation of FeCO3/FeS Scale Formation Using Thermodynamic and Electrochemical Models
,” Corrosion,
National Assoc. of Corrosion Engineers International
, Orlando, FL, Mar. 26–31, p. 18.https://www.onepetro.org/conference-paper/NACE-00102
76.
John
,
R. C.
,
Jordan
,
K. G.
,
Young
,
A. L.
,
Kapusta
,
S. D.
, and
Thompson
,
W. T.
,
1998
, “
Sweetcor: An Information System for the Analysis of Corrosion of Steels by Water and Carbon Dioxide
,” Corrosion 1998,
NACE international
, San Diego, CA, Mar. 22–27, p. 19.https://www.onepetro.org/conference-paper/NACE-98020
77.
Dong
,
Y.
,
Yu
,
D.
, and
Gao
,
H.
,
2006
, “
Comparison of Methods of Failure Probability of Oil and Gas Transmission Pipeline With Defects
,”
Jixie Qiangdu/Journal Mech. Strength, 28(1), pp. 118–122.
78.
Fenyvesi
,
L. L.
,
Kania
,
R.
,
Colquhoun
,
I.
, and
Gu
,
B.
,
2004
, “
A Risk-Based Approach to Maintenance Planning Utilizing in-Line Inspection Data
,”
Proceedings of the Biennial International Pipeline Conference, IPC
, IPC2004-0178, ed., NACE international, Houston, TX, Oct. 4–8, p. 11.10.1115/IPC2004-0178
79.
Park
,
K.
,
Lee
,
G.
,
Nam
,
C.
, and
Lee
,
W.
,
2018
, “
Quantitative and Probabilistic Approach for Underground Pipeline Management Optimization
,”
Comput. Aided Chem. Eng.
, 44, pp.
1549
1554
.10.1016/B978-0-444-64241-7.50253-6
80.
Dong
,
Y.
,
Yu
,
D.
, and
Gao
,
H.
,
2004
, “
Estimation of Failure Probability of Oil and Gas Pipeline With Defects by Monte Carlo Simulation
,”
Jixie Gongcheng Xuebao/Chin. J. Mech. Eng.
, 40(2), pp.
136
140
.https://www.researchgate.net/publication/287347918_Estimation_of_failure_probability_of_oil_and_gas_pipeline_with_defects_by_Monte-Carlo_simulation
81.
Garmbis
,
A. G.
,
2017
, “
A Probabilistic Approach for Eol Fracture Analysis of Subsea Pipelines
,”
Rio Pipeline Conference and Exposition,Technical Papers, Brazilian Petroleum, Gas and Biofuels Institute - IBP, Rio de Janeiro, Brazil, p. 10.
82.
Lopes, R. L., Nikhalat-Jahromi, H., and Jorge, A. M., 2016, “An Overview of Evolutionary Computing for Interpretation in the Oil and Gas Industry,”
Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering - C3S2E ’16
, Porto, Portugal, pp. 110–114.10.1145/2948992.2949006
83.
Mohaghegh
,
S. D.
,
Al-Fattah
,
S. M.
, and
Popa
,
A. S.
,
2011
,
Artificial Intelligence & Data Mining Applications in the E&P Industry
, Society of Petroleum Engineers, Richardson, TX.
84.
Santos
,
R. B.
,
De Sousa
,
E. O.
,
Da Silva
,
F. V.
,
Da Cruz
,
S. L.
, and
Fileti
,
A. M. F.
,
2014
, “
Detection and on-Line Prediction of Leak Magnitude in a Gas Pipeline Using an Acoustic Method and Neural Network Data Processing
,”
Braz. J. Chem. Eng.
, 31(1), pp.
145
153
.10.1590/S0104-66322014000100014
85.
Santos
,
R. B.
,
Rupp
,
M.
,
Bonzi
,
S. J.
,
Maria
,
A.
, and
Fileti
,
F.
,
2013
, “
Comparison Between Multilayer Feedforward Neural Networks and a Radial Basis Function Network to Detect and Locate Leaks in Pipelines Transporting Gas
,”
Chem. Eng. Trans.
, 32, pp.
1375
1380
. 10.33032/CET1332230
86.
ZareNezhad
,
B.
, and
Aminian
,
A.
,
2010
, “
A Multi-Layer Feed Forward Neural Network Model for Accurate Prediction of Flue Gas Sulfuric Acid Dew Points in Process Industries
,”
Appl. Therm. Eng.
, 30(6–7), pp.
692
696
.10.1016/j.applthermaleng.2009.11.017
87.
Abdelatif Hassanien
,
S. S.
, and
Adeeb
,
S.
,
2007
, “
Probabilistic-Based Assessment of Corroded Pipelines: A Comparison Between Closed Form and Surrogate Limit States
,”
ASME
Paper No. IPC2006-10247. 10.1115/IPC2006-10247
88.
Sinha
,
S. K.
, and
Pandey
,
M. D.
,
2002
, “
Probabilistic Neural Network for Reliability Assessment of Oil and Gas Pipelines
,”
Comput. Civ. Infrastruct. Eng.
, 17(5), pp.
320
329
.10.1111/1467-8667.00279
89.
Chamkalani
,
A.
,
Nareh'ei
,
M. A.
,
Chamkalani
,
R.
,
Zargari
,
M. H.
,
Dehestani-Ardakani
,
M. R.
, and
Farzam
,
M.
,
2013
, “
Soft Computing Method for Prediction of Co2 Corrosion in Flow Lines Based on Neural Network Approach
,”
Chem. Eng. Commun.
,
200
(
6
), pp.
731
747
.10.1080/00986445.2012.717311
90.
El-Sebakhy
,
E. A.
,
2009
, “
Data Mining in Forecasting PVT Correlations of Crude Oil Systems Based on Type1 Fuzzy Logic Inference Systems
,”
Comput. Geosci.
, 35(9), pp.
1817
1826
.10.1016/j.cageo.2007.10.016
91.
Nassaj
,
A.
, and
Barabady
,
J.
,
2016
, “
Fault Tree Analysis of Oil and Gas Distillation Tower and Application of Bayesian Networks
,” IEEE International Conference on Industrial Engineering and Engineering Management (
IEEM
), Bali, Indonesia, Dec. 4–7, p.
29
.10.1109/IEEM.2016.7798161
92.
Wang
,
J.-R.
,
Wang
,
T.
, and
Wang
,
J.-Z.
,
2014
, “
Hybrid Modeling of Gas Transport Pipeline Based on Pressure Signals
,”
Beijing Ligong Daxue Xuebao/Trans. Beijing Inst. Technol.
, 34(1), pp.
5
10
.
93.
Wang
,
L.-N.
,
Gao
,
X.-W.
, and
Liu
,
T.
,
2013
, “
Acoustic Location Algorithm in Gas Pipelines Based on the GRNN of LPV Model Approach
,”
Dongbei Daxue Xuebao/J. Northeast. Univ.
, 34(9), pp.
1222
1226
.https://www.researchgate.net/publication/287243287_Acoustic_location_algorithm_in_gas_pipelines_based_on_the_GRNN_of_LPV_model_approach
94.
Bassam
,
A.
,
Ortega-Toledo
,
D.
,
Hernandez
,
J. A.
,
Gonzalez-Rodriguez
,
J. G.
, and
Uruchurtu
,
J.
,
2009
, “
Artificial Neural Network for the Evaluation of CO2 Corrosion in a Pipeline Steel
,”
J. Solid State Electrochem.
,
13
(
5
), pp.
773
780
.10.1007/s10008-008-0588-1
95.
Supriyatman
,
D.
,
Sumarni
,
S.
,
Sidarto
,
K. A.
, and
Suratman
,
R.
,
2012
, “
Artificial Neural Networks for Corrosion Rate Prediction in Gas Pipelines
,”
Society of Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition 2012, APOGCE 2012
, Perth, Australia, Oct. 22–24, pp. 355–363.https://www.onepetro.org/conference-paper/SPE-158173-MS
96.
Weckman
,
G.
,
Young
,
W.
,
Hernández
,
S.
,
Rangwala
,
M.
, and
Ghai
,
V.
,
2010
, “
Extracting Knowledge From Carbon Dioxide Corrosion Inhibition With Artificial Neural Networks
,”
Int. J. Ind. Eng. Theory Appl. Pract.
,
17
(
1
), pp.
69
79
.https://www.researchgate.net/publication/257636961_Extracting_knowledge_from_carbon_dioxide_corrosion_inhibition_with_artificial_neural_networks
97.
Xu
,
W.-Z.
,
Li
,
C. B.
,
Choung
,
J.
, and
Lee
,
J.-M.
,
2017
, “
Corroded Pipeline Failure Analysis Using Artificial Neural Network Scheme
,”
Adv. Eng. Software
, 112, pp.
255
266
.10.1016/j.advengsoft.2017.05.006
98.
Zhu
,
L.
,
Liu
,
H. Y.
, and
Yuan
,
P. X.
,
2010
, “
Study on Image Identification Method of in-Service Pipeline Corrosion Fault
,”
Proceedings - 2nd International Conference on Information Technology and Computer Science, ITCS 2010
, IEEE, Kiev, Ukraine, July 24–25, pp. 182–185.10.1109/ITCS.2010.51
99.
Carvalho
,
A. A.
,
Rebello
,
J. M. A.
,
Sagrilo
,
L. V. S.
,
Camerini
,
C. S.
, and
Miranda
,
I. V. J.
,
2006
, “
MFL Signals and Artificial Neural Networks Applied to Detection and Classification of Pipe Weld Defects
,”
NDT E Int.
, 39(8), pp.
661
667
.10.1016/j.ndteint.2006.04.003
100.
Castañeda
,
H.
, and
Urquidi-Macdonald
,
M.
,
2004
, “
Detecting External Failures in Coated, Buried Pipelines: Theoretical Model and Experimental Verification
,”
Corrosion
,
60
(
6
), pp.
538
547
.10.5006/1.3287757
101.
De Masi, G., Vichi, R., Gentile, M., Bruschi, R., and Gabetta, G., 2014, “A Neural Network Predictive Model of Pipeline Internal Corrosion Profile,” 2014 First International Conference on Systems Informatics, Modelling, and Simulation,
IEEE
, Houston, TX, pp. 18–23.https://dl.acm.org/doi/10.5555/2681970.2682462
102.
Hernández
,
S.
,
Nešić
,
S.
,
Weckman
,
G.
, and
Ghai
,
V.
,
2006
, “
Use of Artificial Neural Networks for Predicting Crude Oil Effect on CO2 Corrosion of Carbon Steels
,”
Corros.
,
62
(
6
), pp.
467
482
.10.5006/1.3279905
103.
Ifezue
,
D.
, and
Tobins
,
F. H.
,
2016
, “
Corrosion in Wet Gas Piping: Root Cause, Mitigation, and Neural Network Prediction Modeling
,”
J. Fail. Anal. Prev.
, 16(2), pp.
235
242
.10.1007/s11668-016-0076-3
104.
Liao
,
K.
,
Cao
,
B.
, and
Liu
,
Z.
,
2011
, “
An Effective Internal Corrosion Rate Prediction Model for the Wet Natural Gas Gathering Pipeline
,” Proceedings - 2011 International Conference on Computational and Information Sciences, ICCIS 2011,
IEEE
, Chengdu, China, Oct. 21–23, pp. 698–701.10.1109/ICCIS.2011.72
105.
Nesic
,
S.
,
Nordsveen
,
M.
,
Maxwell
,
N.
, and
Vrhovac
,
M.
,
2001
, “
Probabilistic Modelling of CO2 Corrosion Laboratory Data Using Neural Networks
,”
Corros. Sci.
, 43(7), pp.
1373
1392
.10.1016/S0010-938X(00)00157-8
106.
Silva
,
R. C. C.
,
Guerreiro
,
J. N. C.
, and
Loula
,
A. F. D.
,
2007
, “
A Study of Pipe Interacting Corrosion Defects Using the FEM and Neural Networks
,”
Adv. Eng. Software
, 38(11–12), pp.
868
875
.10.1016/j.advengsoft.2006.08.047
107.
Castellanos
,
V.
,
Albiter
,
A.
,
Hernández
,
P.
, and
Barrera
,
G.
,
2011
, “
Failure Analysis Expert System for Onshore Pipelines—Part I: Structured Database and Knowledge Acquisition
,”
Expert Syst. Appl.
,
38
(
9
), pp.
11085
11090
.10.1016/j.eswa.2011.02.153
108.
Hajizadeh, Y., 2007, “Neural Networks Can Enhance Fuzzy Corrosion Modelling,”
Oil Gas Eur. Mag.
, 33(2), pp. 76–78.10.2118/106628-MS
109.
Kumar
,
S.
, and
Taheri
,
F.
,
2007
, “
Neuro-Fuzzy Approaches for Pipeline Condition Assessment
,”
Nondestruct. Test. Eval.
,
22
(
1
), pp.
35
60
.10.1080/10589750701327858
110.
Patil, S. S., and Sonavane, S. P., 2017, Data Science and Big Data: An Environment of Computational Intelligence, SpringerLink, New York.
111.
Neuroth
,
M.
,
MacConnell
,
P.
,
Stronach
,
F.
, and
Vamplew
,
P.
,
2000
, “
Improved Modelling and Control of Oil and Gas Transport Facility Operations Using Artificial Intelligence
,”
Knowl.-Based Syst.
, 13(2), pp.
81
92
.10.1007/978-1-4471-0465-0_8
112.
Altabey
,
W. A.
,
2016
, “
FE and ANN Model of ECS to Simulate the Pipelines Suffer From Internal Corrosion
,”
Struct. Monit. Maint.
, 3(3), pp.
297
314
.10.12989/smm.2016.3.3.297
113.
Liao
,
K.
,
Yao
,
Q.
,
Wu
,
X.
, and
Jia
,
W.
,
2012
, “
A Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion
,”
Energies
,
5
(
10
), pp.
3892
3907
.10.3390/en5103892
114.
Liu
,
J.
, and
Wang
,
H.
,
2012
, “
Forecast Model for Inner Corrosion Rate of Oil Pipeline Based on PSO-SVM Jingcheng Liu*, Hongtu Wang and Zhigang Yuan
,”
Int. J. Simul. Proc. Model.,
7
(1–2), pp.
74
80
.https://www.inderscience.com/info/inarticle.php?artid=47863
115.
MohamadiBaghmolaei
,
M.
,
Mahmoudy
,
M.
,
Jafari
,
D.
,
MohamadiBaghmolaei
,
R.
, and
Tabkhi
,
F.
,
2014
, “
Assessing and Optimization of Pipeline System Performance Using Intelligent Systems
,”
J. Nat. Gas Sci. Eng.
, 18, pp.
64
76
.10.1016/j.jngse.2014.01.017
116.
Mohaghegh
,
S.
,
2000
, “
Virtual-Intelligence Applications in Petroleum Engineering: Part 3—Fuzzy Logic
,”
J. Pet. Technol.
, 52(11), pp.
82
87
.10.2118/62415-MS
117.
da Silva
,
H. V.
,
Morooka
,
C. K.
,
Guilherme
,
I. R.
,
da Fonseca
,
T. C.
, and
Mendes
,
J. R. P.
,
2005
, “
Leak Detection in Pretroleum Pipelines Using a Fuzzy System
,”
J. Pet. Sci. Eng.
,
49
(
3–4
), pp.
223
238
.10.1016/j.petrol.2005.05.004
118.
Taşkin
,
H.
,
Kubat
,
C.
,
Uygun
,
Ö.
, and
Arslankaya
,
S.
,
2006
, “
FUZZYFCC: Fuzzy Logic Control of a Fluid Catalytic Cracking Unit (FCCU) to Improve Dynamic Performance
,”
Comput. Chem. Eng.
, 30(5), pp.
850
863
.10.1016/j.compchemeng.2005.12.016
119.
Agwu
,
O. E.
,
Akpabio
,
J. U.
,
Alabi
,
S. B.
, and
Dosunmu
,
A.
,
2018
, “
Artificial Intelligence Techniques and Their Applications in Drilling Fluid Engineering: A Review
,”
J. Pet. Sci. Eng.
, 167, pp.
300
315
.10.1016/j.petrol.2018.04.019
120.
Cranganu
,
C.
,
Breaban
,
M. E.
, and
Luchian
,
H.
,
2015
,
Artificial Intelligent Approaches in Petroleum Geosciences
, Springer, New York.
121.
Ebrahimi
,
M.
, and
Sajedian
,
A.
,
2010
, “
Use of Fuzzy Logic for Predicting Two Phase Inflow Performance Relationship of Horizontal Oil Wells
,” SPE 133436 Presented at Trinidad and Tobago Energy Resources Conference,
Society of Petroleum Engineers
, Port of Spain, Trinidad, June 27–30, p. 10.10.2118/133436-MS
122.
Kabir
,
G.
,
Sadiq
,
R.
, and
Tesfamariam
,
S.
,
2016
, “
A Fuzzy Bayesian Belief Network for Safety Assessment of Oil and Gas Pipelines
,”
Struct. Infrastruct. Eng.
, 12(8), pp.
874
889
.10.1080/15732479.2015.1053093
123.
Lavasani
,
M. R. M.
,
Wang
,
J.
,
Yang
,
Z.
, and
Finlay
,
J.
,
2011
, “
Application of Fuzzy Fault Tree Analysis on Oil and Gas
,”
Int. J. Mar. Sci Eng.
, 1(1), pp.
29
42
.https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=244081
124.
Jamshidi, A., Yazdani-Chamzini, A., Haji, S., and Khalegui, S., 2013, “Developing a New Fuzzy Inference System for Pipeline Risk Assessment,”
J. Loss Prev. Process Ind.
, 26(1), pp. 197–208.https://www.sciencedirect.com/science/article/abs/pii/S0950423012001696
125.
Shahriar
,
A.
,
Sadiq
,
R.
, and
Tesfamariam
,
S.
,
2012
, “
Risk Analysis for Oil & Gas Pipelines: A Sustainability Assessment Approach Using Fuzzy Based Bow-Tie Analysis
,”
J. Loss Prev. Process Ind.
,
25
(
3
), pp.
505
523
.10.1016/j.jlp.2011.12.007
126.
Guzman Urbina
,
A.
, and
Aoyama
,
A.
,
2017
, “
Measuring the Benefit of Investing in Pipeline Safety Using Fuzzy Risk Assessment
,”
J. Loss Prev. Process Ind.
, 45, pp.
116
132
.10.1016/j.jlp.2016.11.018
127.
Bertuccio
,
I.
, and
Moraleda
,
M. V. B.
,
2012
, “
Risk Assessment of Corrosion in Oil and Gas Pipelines Using Fuzzy Logic
,”
Corros. Eng., Sci. Technol.
,
47
(
7
), pp.
553
559
. 10.1179/1743278212Y.0000000028
128.
Li
,
X.
,
Chen
,
G.
, and
Zhu
,
H.
,
2016
, “
Quantitative Risk Analysis on Leakage Failure of Submarine Oil and Gas Pipelines Using Bayesian Network
,”
Process Saf. Environ. Prot.
, 103, pp.
163
173
.10.1016/j.psep.2016.06.006
129.
Jana
,
D. K.
,
Bej
,
B.
,
Wahab
,
M. H. A.
, and
Mukherjee
,
A.
,
2017
, “
Novel Type-2 Fuzzy Logic Approach for Inference of Corrosion Failure Likelihood of Oil and Gas Pipeline Industry
,”
Eng. Fail. Anal.
, 80, pp.
299
311
.10.1016/j.engfailanal.2017.06.046
130.
Maneesh
,
S.
, and
Tore
,
M.
,
2009
, “
Fuzzy Reliability Analysis of Corroded Oil and Gas Pipes
,”
Safety, Reliability and Risk Analysis: Theory, Methods and Applications
, Vol.
4
.https://www.researchgate.net/publication/275645954_Fuzzy_reliability_analysis_of_corroded_oil_and_gas_pipes
131.
Fakhravar
,
D.
,
Khakzad
,
N.
,
Reniers
,
G.
, and
Cozzani
,
V.
,
2017
, “
Security Vulnerability Assessment of Gas Pipelines Using Discrete-Time Bayesian Network
,”
Process Saf. Environ. Prot.
, 111, pp.
714
725
.10.1016/j.psep.2017.08.036
132.
Cai
,
B.
,
Liu
,
Y.
,
Liu
,
Z.
,
Tian
,
X.
,
Zhang
,
Y.
, and
Ji
,
R.
,
2013
, “
Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations
,”
Risk Anal.
, 33(7), pp.
1293
1311
.10.1111/j.1539-6924.2012.01918.x
133.
Hanea
,
D.
,
Hanea
,
A.
,
Ale
,
B.
,
Sillem
,
S.
,
Lin
,
P. H.
,
Van Gulijk
,
C.
, and
Hudson
,
P.
,
2012
, “
Using Dynamic Bayesian Networks to Implement Feedback in a Management Risk Model for the Oil Industry
,”
11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability Conference 2012
, PSAM11 ESREL 2012, Helsinki, Esrel, p. 9.https://www.researchgate.net/publication/256668890_Using_Dynamic_Bayesian_Networks_to_Implement_Feedback_in_a_Management_Risk_Model_for_the_Oil_Industry
134.
Andrews
,
J.
, and
Fecarotti
,
C.
,
2017
, “
System Design and Maintenance Modelling for Safety in Extended Life Operation
,”
Reliab. Eng. Syst. Saf.
, 163, pp.
95
108
. 10.1016/j.ress.2017.01.024
135.
Chiremsel
,
Z.
,
Nait Said
,
R.
, and
Chiremsel
,
R.
,
2016
, “
Probabilistic Fault Diagnosis of Safety Instrumented Systems Based on Fault Tree Analysis and Bayesian Network
,”
J. Fail. Anal. Prev.
, 16(5), pp.
747
760
.10.1007/s11668-016-0140-z
136.
Ayello
,
F.
,
Alfano
,
T.
,
Hill
,
D.
, and
Sridhar
,
N.
,
2012
, “
A Bayesian Network Based Pipeline Risk Management
,”
NACE - International Corrosion Conference Series, Salt Lake City, Utah, Mar. 11–15, pp. 579–592.
137.
Dundulis
,
G.
,
Žutautaitė
,
I.
,
Janulionis
,
R.
,
Ušpuras
,
E.
,
Rimkevičius
,
S.
, and
Eid
,
M.
,
2016
, “
Integrated Failure Probability Estimation Based on Structural Integrity Analysis and Failure Data: Natural Gas Pipeline Case
,”
Reliab. Eng. Syst. Saf.
, 156, pp.
195
202
.10.1016/j.ress.2016.08.003
138.
Zhou
,
Q.
,
Wu
,
W.
,
Liu
,
D.
,
Li
,
K.
, and
Qiao
,
Q.
,
2016
, “
Estimation of Corrosion Failure Likelihood of Oil and Gas Pipeline Based on Fuzzy Logic Approach
,”
Eng. Fail. Anal.
, 70, pp.
48
55
.10.1016/j.engfailanal.2016.07.014
139.
Qin
,
H.
,
Zhou
,
W.
, and
Zhang
,
S.
,
2015
, “
Bayesian Inferences of Generation and Growth of Corrosion Defects on Energy Pipelines Based on Imperfect Inspection Data
,”
Reliab. Eng. Syst. Saf.
, 144, pp.
334
342
.10.1016/j.ress.2015.08.007
140.
Shabarchin
,
O.
, and
Tesfamariam
,
S.
,
2016
, “
Internal Corrosion Hazard Assessment of Oil & Gas Pipelines Using Bayesian Belief Network Model
,”
J. Loss Prev. Process Ind.
,
40
, pp.
479
495
.10.1016/j.jlp.2016.02.001
141.
Breton
,
T.
,
Sanchez-Gheno
,
J. C.
,
Alamilla
,
J. L.
, and
Alvarez-Ramirez
,
J.
,
2010
, “
Identification of Failure Type in Corroded Pipelines: A Bayesian Probabilistic Approach
,”
J. Hazard. Mater
, 179(1–3), pp.
628
634
.10.1016/j.jhazmat.2010.03.049
142.
Guo
,
X.
,
Zhang
,
L.
,
Liang
,
W.
, and
Haugen
,
S.
,
2018
, “
Risk Identification of Third-Party Damage on Oil and Gas Pipelines Through the Bayesian Network
,”
J. Loss Prev. Process Ind.
, 54, pp.
163
178
.10.1016/j.jlp.2018.03.012
143.
Qin
,
H.
, and
Zhou
,
W.
,
2014
, “
Reliability Analysis of Corroding Pipelines Considering the Growth and Generation of Corrosion Defects
,”
ASME
Paper No. IPC2014-33213.10.1115/IPC2014-33213
144.
Al-Amin
,
M.
,
Zhou
,
W.
,
Zhang
,
S.
,
Kariyawasam
,
S.
, and
Wang
,
H.
,
2014
, “
Hierarchical Bayesian Corrosion Growth Model Based on in-Line Inspection Data
,”
ASME J. Pressure Vessel Technol.
, 136(4), p.
041401
.10.1115/1.4026579
145.
Wang
,
H.
,
Yajima
,
A.
,
Liang
,
R. Y.
, and
Castaneda
,
H.
,
2015
, “
A Bayesian Model Framework for Calibrating Ultrasonic in-Line Inspection Data and Estimating Actual External Corrosion Depth in Buried Pipeline Utilizing a Clustering Technique
,”
Struct. Saf.
, 54, pp.
19
31
. 10.1016/j.strusafe.2015.01.003
146.
Mohaghegh
,
S. D.
, and
Khazaeni
,
Y.
,
2011
, “
Application of Artificial Intelligence in the Upstream Oil and Gas Industry
,”
Artificial Intelligence: Approaches, Tools, and Applications
, New York.https://www.researchgate.net/publication/316131951_Application_of_Artificial_Intelligence_in_the_upstream_oil_and_gas_industry
147.
Ak
,
R.
,
Li
,
Y.
,
Vitelli
,
V.
,
Zio
,
E.
,
López Droguett
,
E.
, and
Magno Couto Jacinto
,
C.
,
2013
, “
NSGA-II-Trained Neural Network Approach to the Estimation of Prediction Intervals of Scale Deposition Rate in Oil & Gas Equipment
,”
Expert Syst. Appl.
, 40(4), pp.
1205
1212
.10.1016/j.eswa.2012.08.018
148.
Anifowose
,
F. A.
,
Labadin
,
J.
, and
Abdulraheem
,
A.
,
2014
, “
Non-Linear Feature Selection-Based Hybrid Computational Intelligence Models for Improved Natural Gas Reservoir Characterization
,”
J. Nat. Gas Sci. Eng.
, 21, pp.
397
410
.10.1016/j.jngse.2014.09.001
149.
Teodoriu
,
C.
,
Bello
,
O.
,
Obiwanne
,
A.
,
Oppelt
,
J.
,
Holzmann
,
J.
, and
Yaqoob
,
T.
,
2016
, “
Application of Artificial Intelligence Techniques in Drilling System Design and Operations: A State of the Art Review and Future Research Pathways
,”
SPE Nigeria Annual International Conference and Exhibition (2016)
, Lagos, Nigeria, Aug. 2–4, p.
22
.10.2118/184320-MS
150.
Kang
,
J. Y.
, and
Lee
,
B. S.
,
2017
, “
Optimisation of Pipeline Route in the Presence of Obstacles Based on a Least Cost Path Algorithm and Laplacian Smoothing
,”
Int. J. Nav. Archit. Ocean Eng.
, 9(5), pp.
492
498
.10.1016/j.ijnaoe.2017.02.001
151.
Castillo
,
L.
, and
Dorao
,
C. A.
,
2013
, “
Decision-Making in the Oil and Gas Projects Based on Game Theory: Conceptual Process Design
,”
Energy Convers. Manag.
, 66, pp.
48
55
.10.1016/j.enconman.2012.09.029
152.
Rocha, D. M., Cardoso, C. D. O., Borges, R. G., Baioco, J. S., Coutinho, S., Albrecht, C. H., Jacob, B. P., Coutinho, D. da C. e S., Albrecht, C. H., Jacob, B. P., Coutinho, S., Albrecht, C. H., and Jacob, B. P., 2015, “Optimization of Submarine Pipeline Routes Considering Slope Stability,” Proceedings of the Annual Offshore Technology Conference, Conferencia de Tecnología Offshore, ed., Houston, TX, May 4–7, p. 16.
153.
Moinian
,
F.
,
Sabouhi
,
H.
,
Hushmand
,
J.
,
Hallaj
,
A.
,
Khaledi
,
H.
, and
Mohammadpour
,
M.
,
2017
, “
Gas Turbine Preventive Maintenance Optimization Using Genetic Algorithm
,”
Int. J. Syst. Assur. Eng. Manag.
, 8(3), pp. 594–601.10.1007/s13198-017-0627-3
154.
De Lucena
,
R. R.
,
Baioco
,
J. S.
,
De Lima
,
B. S. L. P.
,
Albrecht
,
C. H.
, and
Jacob
,
B. P.
,
2014
, “
Optimal Design of Submarine Pipeline Routes by Genetic Algorithm With Different Constraint Handling Techniques
,”
Adv. Eng. Software
, 76, pp.
110
124
.10.1016/j.advengsoft.2014.06.003
155.
Liu
,
X.
,
Zheng
,
J.
,
Fu
,
J.
,
Ji
,
J.
, and
Chen
,
G.
,
2018
, “
Multi-Level Optimization of Maintenance Plan for Natural Gas Pipeline Systems Subject to External Corrosion
,”
J. Nat. Gas Sci. Eng.
, 50, pp. 64–73.10.1016/j.jngse.2017.11.021
156.
Opher
,
T.
, and
Ostfeld
,
A.
,
2011
, “
A Coupled Model Tree (MT) Genetic Algorithm (GA) Scheme for Biofouling Assessment in Pipelines
,”
Water Res.
, 45(18), pp.
6277
6288
.10.1016/j.watres.2011.09.037
157.
Zhu
,
X.
, and
Kilbane
, and
J. J.
, II
,
2004
, “
Molecular Tools in Microbial Corrosion
,”
Pet. Biotechnol. Dev. Perspect.
, 151, pp.
219
232
.10.1016/S0167-2991(04)80149-6
158.
Motta
,
R.
,
Caloba
,
G.
,
Almeida
,
L.
,
Moreira
,
A.
,
Nogueira
,
M.
,
Cardoso
,
L.
, and
Berlink
,
L.
,
2000
, “
Análisis de Inversiones y RiesGos Aplicados a la Industria Petrolera
,”
Actas de la Conferencia y Exposición SPE Asia Pacific Oil and Gas
, Society of Petroleum Engineers, Brisbane, Australia, p.
9
.10.4043/25711-MS
159.
Willigers
,
B.
, and
Bratvold
,
R.
,
2009
, “
Valuing Oil and Gas Options by Least-Squares Monte Carlo Simulation
,”
SPE Proj. Facil. Constr.
, 4(4), pp.
146
155
.10.2118/116026-MS
160.
Mudford
,
B. S.
,
2000
, “
Valuing and Comparing Oil and Gas Opportunities: A Comparison of Decision Tree and Simulation Methodologies
,”
SPE Annual Technical Conference and Exhibition
, NACE international, Dallas, TX, p.
10
.10.2118/63201-MS
161.
Ungerer
,
P.
,
Tavitian
,
B.
, and
Boutin
,
A.
,
2005
,
Applications of Molecular Simulation in the Oil and Gas Industry
, Lyon, France.
162.
Ungerer
,
P.
,
2003
, “
From Organic Geochemistry to Statistical Thermodynamics: The Development of Simulation Methods for the Petroleum Industry
,”
Oil Gas Sci. Technol.
, 58(2), pp.
271
297
.10.2516/ogst:2003017
163.
Fan
,
M.
,
Gong
,
J.
,
Wu
,
Y.
, and
Kong
,
W.
,
2017
, “
Gas Supply Reliability Analysis of the Shaanxi-Beijing Gas Pipeline Network Based on the Simplified Topological Structure
,”
Nat. Gas Ind.
, 37(4), pp.
123
129
.10.3787/j.issn.1000-0976.2017.04.015
164.
Parvizsedghy
,
L.
,
Senouci
,
A.
,
Zayed
,
T.
,
Mirahadi
,
S. F.
, and
El-Abbasy
,
M. S.
,
2015
, “
Condition-Based Maintenance Decision Support System for Oil and Gas Pipelines
,”
Struct. Infrastruct. Eng.
, 11(10), pp.
1323
1337
.10.1080/15732479.2014.964266
165.
Hasan
,
S.
,
Sweet
,
L.
,
Hults
,
J.
,
Valbuena
,
G.
, and
Singh
,
B.
,
2018
, “
Corrosion Risk-Based Subsea Pipeline Design
,”
Int. J. Pressure Vessels Piping
,
159
, pp.
1
14
.10.1016/j.ijpvp.2017.10.003
166.
Malyukova
,
M. G.
, and
Timashev
,
S. A.
,
1999
, “
Longevidad Probabilística de un Oleoducto Con Grietas Sometidas a Corrosión Interna
,”
Sociedad Americana de Ingenieros Mecánicos, División de Recipientes a Presión y Tuberías (Publicación) PVP,
ASME, Houston, TX, pp. 135–142.
167.
Ossai
,
C. I.
,
2013
, “
Pipeline Corrosion Prediction and Reliability Analysis: A Systematic Approach With Monte Carlo Simulation and Degradation Models
,”
Int. J. Sci. Technol. Res.
, 2(3), pp.
58
69
.http://www.ijstr.org/final-print/mar2013/Pipeline-Corrosion-Prediction-And-Reliability-Analysis-A-Systematic-Approach-With-Monte-Carlo-Simulation-And-Degradation-Models.pdf
168.
Younsi
,
K.
,
Chebouba
,
A.
,
Zemmour
,
N.
, and
Smati
,
A.
,
2013
, “
Pipeline Integrity Assessment Using Probabilistic Transformation Method and Corrosion Growth Modeling Through Gamma Distribution
,”
Oil Gas Facil.
, 2(2), pp.
51
60
.10.2118/163145-PA
169.
Mahmoodian
,
M.
, and
Li
,
C. Q.
,
2015
, “
Stochastic Failure Analysis of Defected Oil and Gas Pipelines
,”
Handbook of Materials Failure Analysis With Case Studies From the Oil and Gas Industry
, Cambridge, MA.
170.
Caleyo
,
F.
,
Alfonso
,
L.
,
Espina-Hernández
,
J. H.
, and
Hallen
,
J. M.
,
2007
, “
Criteria for Performance Assessment and Calibration of in-Line Inspections of Oil and Gas Pipelines
,”
Meas. Sci. Technol.
,
18
(
7
), pp.
1787
1799
.10.1088/0957-0233/18/7/001
171.
Jones, B. M., and Ferrari, A.-M., 2016, “Value of Reliability, Availability and Maintainability (Ram) Simulation Models in Pipeline Systems,”
ASME
Paper No. IPC2016-64205.10.1115/IPC2016-64205
172.
Bazán
,
FAV
, and
Beck
,
AT
,
2011
, “
Confiabilidad de Tuberías Bajo Corrosión y Daño Mecánico
,”
Aplicaciones de estadística y probabilidad en ingeniería civil - Procedimientos de la 11ª Conferencia internacional sobre aplicaciones de estadística y probabilidad en ingeniería civil
, Taylor and Francis Inc., New York, pp.
2285
2292
.
173.
Bailey
,
D.
, and
Wright
,
E.
,
2003
,
SCADA Práctico Para La Industria
, Elsevier, New York.
174.
Datta
,
S.
, and
Sarkar
,
S.
,
2016
, “
A Review on Different Pipeline Fault Detection Methods
,”
J. Loss Prev. Process Ind.
, 41, pp.
97
106
.10.1016/j.jlp.2016.03.010
175.
Godhavn
,
J. M.
,
Pavlov
,
A.
,
Kaasa
,
G. O.
, and
Rolland
,
N. L.
,
2011
, “
Drilling Seeking Automatic Control Solutions
,”
IFAC Proc. Vol
,
44
(
1
), pp.
10842
10850
.10.3182/20110828-6-IT-1002.00551
176.
Mirzaee
,
A.
, and
Salahshoor
,
K.
,
2013
, “
Fault Tolerant Control of an Industrial Gas Turbine Based on a Hybrid Fuzzy Adaptive Unscented Kalman Filter
,”
ASME J. Eng. Gas Turbines Power
, 135(12), p.
122501
.10.1115/1.4025309
177.
Ioniţə
,
L.
, and e
Ioniţə
,
I.
,
2014
, “
NM-MAS: AAgente MúltipleSistema Para La Gestión De Redes En La Industria Petrolera
,”
Actas — Conferencia internacional RoEduNet IEEE, Chisinau, Moldavia, pp. 1–6.
178.
Mohamed
,
N.
, and
Jawhar
,
I.
,
2008
, “
Una Arquitectura de Red de Sensores Cableados/Inalámbricos Con Tolerancia a Fallas Para Monitorear Las Infraestructuras de Tuberías
,”
Actas: 2008 Segunda Conferencia Internacional sobre Tecnologías y Aplicaciones de Sensores (sensorcomm 2008)
, IEEE, Cap Esterel, France, pp.
179
184
.
179.
Moghadam
,
J. N.
,
Salahshoor
,
K.
, and
Kamp
,
A. M.
,
2011
, “
Erratum: Evaluation of Waterflooding Performance in Heavy Oil Reservoirs Applying Capacitance-Resistive Model
,”
Pet. Sci. Technol.
,
29
(
17
), pp.
1811
1824
.10.1080/10916461003645435
180.
Ortiz-Torres
,
G.
,
Escobar
,
R. F.
,
Adam-Medina
,
M.
,
Astorga-Zaragoza
,
C. M.
, and
Guerrero-Ramírez
,
G. V.
,
2016
, “
Control Tolerante a Fallas Activo En Sensores y Actuadores: Aplicación a Una Columna de Destilaciòn
,”
RIAI—Rev. Iberoam. Autom. Inform. Ind.
, 13(1), pp.
67
79
.10.1016/j.riai.2015.05.006
181.
Jawhar
,
I.
,
Mohamed
,
N.
,
Mohamed
,
M. M.
, and
Aziz
,
J.
,
2008
, “
A Routing Protocol and Addressing Scheme for Oil, Gas, and Water Pipeline Monitoring Using Wireless Sensor Networks
,”
Fifth IEEE and IFIP International Conference on Wireless and Optical Communications Networks, WOCN 2008
, Surabaya, Indonesia, May 5–7. 10.1109/WOCN.2008.4542530
182.
Blanke
,
M.
,
Christian Frei
,
W.
,
Kraus
,
F.
,
Ron Patton
,
J.
, and
Staroswiecki
,
M.
,
2000
, “
What is Fault-Tolerant Control?
,”
IFAC Proc.
, 33(11), pp.
41
52
.10.1016/S1474-6670(17)37338-X
183.
Zhang
,
Y.
, and
Jiang
,
J.
,
2008
, “
Bibliographical Review on Reconfigurable Fault-Tolerant Control Systems
,”
Annu. Rev. Control
, 32(2), pp.
229
252
.
184.
Puig
,
V.
,
Quevedo
,
J.
,
Escobet
,
T.
,
Morcego
,
B.
, and
Ocampo
,
C.
,
2004
, “
Control Tolerante a Fallos (Parte I): Fundamentos y Diagnóstico de Fallos
,”
Rev. Iberoam. Automática e Informática Ind.
, 1(1), pp.
15
31
.https://www.researchgate.net/publication/28141715_Control_Tolerante_a_Fallos_Parte_I_Fundamentos_y_Diagnostico_de_Fallos
185.
Puig
,
V.
,
Quevedo
,
J.
,
Escobet
,
T.
,
Morcego
,
B.
, and
Ocampo
,
C.
,
2004
, “
Control Tolerante a Fallos (Parte II): Mecanismos de Tolerancia y Sistema Supervisor
,”
Rev. Iberoam. Automática e Informática Ind.
, 1(1), pp.
15
31
. 10.4995/riai.v1i2.10608
186.
Shafeek
,
H. I.
,
Gadelmawla
,
E. S.
,
Abdel-Shafy
,
A. A.
, and
Elewa
,
I. M.
,
2004
, “
Automatic Inspection of Gas Pipeline Welding Defects Using an Expert Vision System
,”
NDT & E Int.
,
37
(
4
), pp.
301
307
.10.1016/j.ndteint.2003.10.004
187.
Cetinkaya
,
EK
,
2001
, “
Análisis de Confiabilidad de Los Sistemas Scada,
Universidad de Missouri-Rolla
, Rolla, MO, 13, pp.
844
849
.
188.
Sadovnychiy
,
S.
, and
Ramirez
,
T.
,
2001
, “
Base Teórica Para la Detección de Fugas en Tuberías Por Medio de Cámara IR
,” pp. 177–183, SPIE No. 4360.
189.
Sadovnychiy
,
S.
,
Bulgakov
,
I.
, and
Valadez
,
J.
,
2005
, “
Sistema Para la Detección Remota De Fugas En Tuberías
,”
Conferencia de ingeniería petrolera de América Latina y el Caribe de SPE
, Society of Petroleum Engineers, Rio de Janeiro, Brazil, p.
5
.
190.
Kishawy
,
H. A.
, and
Gabbar
,
H. A.
,
2010
, “
International Journal of Pressure Vessels and Piping Review of Pipeline Integrity Management Practices
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
373
380
.10.1016/j.ijpvp.2010.04.003
191.
Ramella
,
C.
,
Canavese
,
G.
,
Corbellini
,
S.
,
Pirola
,
M.
,
Cocuzza
,
M.
,
Scaltrito
,
L.
,
Ferrero
,
S.
,
Pirri
,
C. F.
,
Ghione
,
G.
,
Rocca
,
V.
,
Tasso
,
A.
, and
Lullo
,
A. D.
,
2015
, “
A Novel Smart Caliper Foam Pig for Low-Cost Pipeline Inspection—Part B: Field Test and Data Processing
,”
J. Pet. Sci. Eng.
, 133, pp.
771
775
.10.1016/j.petrol.2014.09.038
192.
Sadovnychiy
,
S.
,
Löpez
,
J.
,
Ponomaryov
,
V.
, and
Sadovnychyy
,
A.
,
2006
, “
Evaluation of Distance Measurement Accuracy by Odometer for Pipelines Pigs
,”
J. Jpn. Pet. Inst.
, 49(1), pp.
38
42
.10.1627/jpi.49.038
193.
Ledezma
,
F. D.
,
Amer
,
A.
,
Abdellatif
,
F.
,
Outa
,
A.
,
Trigui
,
H.
,
Patel
,
S.
, and
Binyahib
,
R.
,
2015
, “
Estudio de Mercado de Tecnologías de Inspección Robótica Submarina Para el Petróleo en Alta Mar
,”
SPE Saudi Arabia Section Annual Technical Symposium and Exhibition, Society of Petroleum Engineers, Al-Khobar, Saudi Arabia, p. 9.
194.
Zeynalova
,
M. H.
,
Rustamov
,
R. B.
, and
Salahova
,
S. E.
,
2009
, “
Advanced Space Technology for Oil Spill Detection
,”
Space Technologies of the Benefit of Human Society and Earth
, New York.
195.
Ravet
,
F.
,
Rochat
,
E.
, and
Niklès
,
M.
,
2013
, “
Challenges, Requirements and Advances for Distributed Fiber Optic Sensors in SURF Structures and Subsea Well Monitoring
,”
ASME
Paper No. OMAE2013-10367. 10.1115/OMAE2013-10367
196.
Noor
,
N. A.
,
Rahim
,
R. A.
,
Ling
,
L. P.
,
Pusppanathan
,
J.
,
Rahiman
,
M. H. F.
,
Nor Ayob
,
N. M.
, and
Mohd Yunusa
,
F. R.
,
2015
, “
A Review of Ultrasonic Tomography for Monitoring the Corrosion of Steel Pipes
,”
J. Teknol.
, 73, pp.
157
163
.https://www.researchgate.net/publication/281890870_A_review_of_ultrasonic_tomography_for_monitoring_the_corrosion_of_steel_pipes
197.
Chalgham
,
W.
,
Seibi
,
A.
, and
Lomas
,
M.
,
2016
, “
Detección de Fugas y Tuberías de Autocuración Mediante Tecnología de Bolas Gemelas
,”
Proceedings - SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Dubai, EAU, p. 18.
198.
Tan
,
M. Y.
,
2017
, “
Principios y Problemas en el Monitoreo de la Salud Estructural Mediante Sensores de Corrosión
,”
NACE Corros. Conf., 8, pp. 5308–5320.
199.
Giunta
,
G.
,
Timossi
,
P.
, and
Borghi
,
G. P.
,
2015
, “
Despliegue de Campo del Sistema de Monitoreo de Tubería Vibroacústica ENI (e-VpmsTM): Largo PlazoAnálisis de Rendimiento
,”
Offshore Mediterrenean Conference and Exhibition, Offshore Mediterranean Conference, ed., Ravenna, Italia.
200.
Zhang, L.-B., Wang, Z.-H., and Liang, W., 2007, “Remote and Intelligent Diagnostic Methods on Leakage Fault for Crude Oil Pipelines,”
ASME
Paper No. 10.1115/IPC2006-10065.10.1115/IPC2006-10065
201.
Ariaratnam, S. T., and Chandrasekaran, M., 2010, “Development of an Innovative Free-Swimming Device for Detection of Leaks in Oil and Gas Pipelines,”
Construction Research Congress 2010: Innovation for Reshaping Construction Practice - Proceedings of the 2010 Construction Research Congress
, American Society of Civil Engineers, Banff, AB, Canada, May 8–10, pp. 588–596.https://ascelibrary.org/doi/10.1061/41109%28373%2959
202.
Fletcher, R., and Chandrasekaran, M., 2008, “SmartBallTM: Un Nuevo Enfoque en la Detección de Picos de Tuberías,” 7ma Conferencia Internacional de Tuberías, Volumen 2, 29 de septiembre al 3 de octubre, IPC, ed., Calgary, AB, Canada, pp. 117–133, Document No. IPC2008-64065.
203.
Devalla, V., and Om, P., 2016, “Longitudinal and Directional Control Modeling for a Small Powered Parafoil Aerial Vehicle,”
AIAA Atmospheric Flight Mechanics Conference
, ARC, ed., San Diego, CA, Jan. 4–8, p. 8.10.2514/6.2016-3544
204.
Gómez
,
C.
, and
Green
,
D. R.
,
2017
, “
Small Unmanned Airborne Systems to Support Oil and Gas Pipeline Monitoring and Mapping
,”
Arab. J. Geosci.
, 10(9), pp.
2
17
.10.1007/s12517-017-2989-x
205.
Lioliou
,
D.
, and
Ramirez
,
P.
,
2016
, “
Drones Help Detect Corrosion Under Insulation
,”
Mater. Perform.
, IEEE, Las Vegas, NV, pp.
6458
6463
.
206.
Xiaoqian, H., Karki, H., Shukla, A., and Xiaoxiong, Z., 2017, “Variant PID Controller Design for Autonomous Visual Tracking of Oil and Gas Pipelines via an Unmanned Aerial Vehicle,”
International Conference on Control, Automation and Systems
, IEEE, Jeju, South Korea, Oct. 18–21, pp. 368–372.10.23919/ICCAS.2017.8204467
207.
Cai
,
B.
, and
Wang
,
J.
,
2013
, “
Application of 3D GIS to Pipeline Integrity Management
,”
Nat. Gas Ind.
, 33(12), pp.
144
150
.10.3787/j.issn.1000-0976.2013.12.022
208.
Agbakwuru
,
J.
,
2011
, “
Pipeline Potential Leak Detection Technologies: Assessment and Perspective in the Nigeria Niger Delta Region
,”
J. Environ. Prot. (Irvine,. Calif).
, 2, pp.
1055
1061
.10.4236/jep.2011.28121
209.
Bernasconi
,
G.
,
Del Giudice
,
S.
, and
Giunta
,
G.
,
2014
, “
Advanced Real Time and Long Term Monitoring of Transportation Pipelines
,”
ASME
Paper No. IMECE2014-36872.10.1115/IMECE2014-36872
210.
Kostianoy
,
A. G.
,
Bulycheva
,
E. V.
,
Semenov
,
A. V.
, and
Krainyukov
,
A.
,
2015
, “
Satellite Monitoring Systems for Shipping and Offshore Oil and Gas Industry in the Baltic Sea
,”
Transp. Telecommun.
, 16(2), pp.
117
126
.10.1515/ttj-2015-0011
211.
Bennetts, V. M. H., Lilienthal, A. J., Khaliq, A. A., Sese, V. P., and Trincavelli, M., 2013, “Towards Real-World Gas Distribution Mapping and Leak Localization Using a Mobile Robot with 3D and Remote Gas Sensing Capabilities,”
Proceedings - IEEE International Conference on Robotics and Automation
, IEEE, Karlsruhe, Germany, May 6–10, pp. 2335–2340.10.1109/ICRA.2013.6630893
212.
Duru
,
C.
, and
Ani
,
C.
,
2017
, “
A Statistical Analysis on the Leak Detection Performance of Underground and Overground Pipelines With Wireless Sensor Networks Through the Maximum Likelihood Ratio Test
,”
Sadhana—Acad. Proc. Eng. Sci.
, 1, pp.
1
11
.10.1007/s12046-017-0731-8
213.
Eze
,
J.
,
Nwagboso
,
C.
, and
Georgakis
,
P.
,
2017
, “
Framework for Integrated Oil Pipeline Monitoring and Incident Mitigation Systems
,”
Robot. Comput. Integr. Manuf.
, 47, pp.
44
52
.10.1016/j.rcim.2016.12.007
214.
Owojaiye
,
G.
, and
Sun
,
Y.
,
2013
, “
Focal Design Issues Affecting the Deployment of Wireless Sensor Networks for Pipeline Monitoring
,”
Ad Hoc Networks
,
11
(
3
), pp.
1237
1253
.10.1016/j.adhoc.2012.09.006
215.
Radmand, P., Talevski, A., Petersen, S., and Carlsen, S., 2010, “Taxonomy of Wireless Sensor Network Cyber Security Attacks in the Oil and Gas Industries,”
Proceedings - International Conference on Advanced Information Networking and Applications, AINA
, IEEE, Perth, WA, Australia, Apr. 20–23, pp. 949–957.10.1109/AINA.2010.175
216.
Rashid
,
S.
,
Akram
,
U.
, and
Khan
,
S. A.
,
2015
, “
WML: Wireless Sensor Network Based Machine Learning for Leakage Detection and Size Estimation
,”
Procedia Comput. Sci.
,
63
, pp.
171
176
.10.1016/j.procs.2015.08.329
217.
Saeed, H., Ali, S., Rashid, S., Qaisar, S., and Felemban, E., 2014, “Monitoreo Confiable de Oleoductos y Gasoductos Utilizando la Red Inalámbrica de Sensores (WSN) - REMONG,” Actas del Novena Conferencia Internacional sobre Sistemas de Ingeniería de Sistemas: La Perspectiva Socio-Técnica, SoSE 2014, IEEE, Adelade, SA, Australia, pp. 230–235.
218.
Yu, H., and Guo, M., 2012, “An Efficient Oil and Gas Pipeline Monitoring Systems Based on Wireless Sensor Networks,”
Proceedings - 3rd International Conference on Information Security and Intelligent Control, ISIC 2012, IEEE
, Yunlin, Taiwan, Aug. 14–16, p. 178–181.10.1109/ISIC.2012.6449735
219.
Inaudi
,
D.
, and
Glisic
,
B.
,
2010
, “
Long-Range Pipeline Monitoring by Distributed Fiber Optic Sensing
,”
ASME
Paper No. IPC2006-10287.10.1115/IPC2006-10287
220.
Inaudi
,
D.
, and
Glišić
,
B.
,
2006
, “
Fiber Optic Sensing for Innovative Oil & Gas Production and Transport Systems
,”
Optical Fiber Sensors
, Cancun, México, p. 10.10.1364/OFS.2006.FB3
221.
Kersey
,
A. D.
,
2000
, “
Optical Fiber Sensors for Permanent Downwell Monitoring Applications in the Oil and Gas Industry
,”
13th International Conference on Optical Fibre Sensors
, Kyongju, Korea, Apr. 12–16, p. 6.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.7915&rep=rep1&type=pdf
222.
Yan
,
S. Z.
, and
Chyan
,
L. S.
,
2010
, “
Performance Enhancement of BOTDR Fiber Optic Sensor for Oil and Gas Pipeline Monitoring
,”
Opt. Fiber Technol.
, 16(2), pp.
100
109
.10.1016/j.yofte.2010.01.001
223.
Ali
,
S.
,
Qaisar
,
S.
,
Saeed
,
H.
,
Khan
,
M.
,
Naeem
,
M.
, and
Anpalagan
,
A.
,
2015
, “
Network Challenges for Cyber Physical Systems With Tiny Wireless Devices: A Case Study on Reliable Pipeline Condition Monitoring
,”
Sensors (Switzerland)
,
15
(
4
), pp.
7172
7205
.10.3390/s150407172
224.
Davis
,
P.
, and
Brockhurst
,
J.
,
2015
, “
Subsea Pipeline Infrastructure Monitoring: A Framework for Technology Review and Selection
,”
Ocean Eng.
, 104, pp.
540
548
.10.1016/j.oceaneng.2015.04.025
225.
Korostynska
,
O.
,
Mason
,
A.
, and
Al-Shamma'A
,
A.
,
2014
, “
Microwave Sensors for the Non-Invasive Monitoring of Industrial and Medical Applications
,”
Sens. Rev.
, 34(2), pp.
182
191
. https://www.emerald.com/insight/content/doi/10.1108/SR-11-2012-725/full/html
226.
Zhang
,
Y.
,
Chen
,
S.
,
Li
,
J.
, and
Jin
,
S.
,
2014
, “
Leak Detection Monitoring System of Long Distance Oil Pipeline Based on Dynamic Pressure Transmitter
,”
Meas. J. Int. Meas. Confed.
, 49(1), pp.
382
389
.10.1016/j.measurement.2013.12.009
227.
Al-Hajeri
,
S.
,
Wylie
,
S. R.
,
Shaw
,
A.
, and
Al-Shamma'A
,
A. I.
,
2009
, “
Real Time Em Waves Monitoring System for Oil Industry Three Phase Flow Measurement
,”
J. Phys. Conf. Ser.
, 178(2009), pp.
1
7
.https://iopscience.iop.org/article/10.1088/1742-6596/178/1/012030
228.
Giunta, G., Lucci, A., Budano, S., and Prandi, L., 2012, “Pipeline Health Integrity Monitoring (PHIM) Based on Acoustic Emission Technique,”
ASME
Paper No. PVP2012-78545.10.1115/PVP2012-78545
229.
Scafutto
,
R. D. M.
,
de Souza Filho
,
C. R.
,
Riley
,
D. N.
, and
de Oliveira
,
W. J.
,
2018
, “
Evaluation of Thermal Infrared Hyperspectral Imagery for the Detection of Onshore Methane Plumes: Significance for Hydrocarbon Exploration and Monitoring
,”
Int. J. Appl. Earth Obs. Geoinf.
, 64(2018), pp.
311
325
.10.1016/j.jag.2017.07.002
230.
Umeadi
,
B. B. N.
, and
Jones
,
K. G.
,
2008
, “
Development of an Intelligent Sensor for the Monitoring of Pipeline System Integrity
,” SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, Oct. 28–30, Paper No.
SPE-115503
.10.2118/115503-MS
231.
Zhao
,
X.
,
Li
,
W.
,
Zhou
,
L.
,
Song
,
G.
,
Ba
,
Q.
,
Ho
,
S. C. M.
, and
Ou
,
J.
,
2015
, “
Application of Support Vector Machine for Pattern Classification of Active Thermometry-Based Pipeline Scour Monitoring
,”
Struct. Control Heal. Monit.
, 22(6), pp.
903
918
.10.1002/stc.1724
232.
Cegla
,
F.
, and
Allin
,
J.
,
2015
, “
Ultrasonic Monitoring of Pipeline Wall Thickness With Autonomous, Wireless Sensor Networks
,”
Oil Gas Pipelines: Integrity Safety Handbook
, Hoboken, NJ.
233.
Instanes, G., Toppe, M., Kristiansen, S. H., and Nagy, P. B., 2010, “El Uso de Sensores Inteligentes Ultrasónicos no Intrusivos Para el Control de la Corrosión y la Erosión,” Sociedad de Ingenieros de Petróleo - Quinta Conferencia Internacional de SPE sobre la corrosión de campos petroleros 2010, Society of Petroleum Engineers, Aberdeen, Reino Unido, pp. 6–15.
234.
Fan, C., McLaury, B. S., and Shirazi, S. A., 2011, “Evaluation of Electrical Resistance Probes To Detect Pipeline Erosion and Sand Production in Low Liquid Loading Flow Conditions,”
SPE Eastern Regional Meeting
, Society of Petroleum Engineers, Columbus, OH, Aug. 17–19, pp. 187–200.10.2118/149013-MS
235.
Al-Kizwini
,
M. A.
,
Wylie
,
S. R.
,
Al-Khafaji
,
D. A.
, and
Al-Shamma'a
,
A. I.
,
2013
, “
The Monitoring of the Two Phase Flow-Annular Flow Type Regime Using Microwave Sensor Technique
,”
Meas. J. Int. Meas. Confed.
, 46(1), pp.
45
51
.10.1016/j.measurement.2012.05.012
236.
Bukhari
,
S. F. A.
, and
Yang
,
W.
,
2006
, “
Multi-Interface Level Sensors and New Development in Monitoring and Control of Oil Separators
,”
Sensors
,
6
(
4
), pp.
380
389
.10.3390/s60400380
237.
Mesquita
,
T. J.
,
Chauveau
,
E.
,
Mantel
,
M.
,
Bouvier
,
N.
, and
Koschel
,
D.
,
2014
, “
Corrosion and Metallurgical Investigation of Two Supermartensitic Stainless Steels for Oil and Gas Environments
,”
Corros. Sci.
, 81, pp.
152
161
.10.1016/j.corsci.2013.12.015
238.
Patchigolla
,
K.
, and
Oakey
,
J. E.
,
2013
, “
Design Overview of High Pressure Dense Phase CO2 Pipeline Transport in Flow Mode
,”
Energy Procedia
,
37
, pp.
3123
3130
.10.1016/j.egypro.2013.06.198
239.
Nicola
,
S.
,
Carreto
,
V.
,
Mentzer
,
R. A.
, and
Mannan
,
M. S.
,
2013
, “
Corrosion Under Insulation Detection Technique
,”
Corrosion 2013, National Assoc. of Corrosion Engineers International, Houston, TX, p. 13.
240.
Shukla
,
A.
, and
Karki
,
H.
,
2016
, “
Application of Robotics in Onshore Oil and Gas Industry-A Review Part I
,”
Rob. Auton. Syst.
, 75, pp. 490–507.10.1016/j.robot.2015.09.012
You do not currently have access to this content.