Abstract

A three-dimensional thermo-mechanical finite element model (FEM) was developed and solved to study the feasibility of hybrid friction diffusion bonding (HFDB) technique for welding tube–tubesheet joints using Abaqus/explicit enviroment. Considering the process thermo-mechanical nature, temperature-dependent material properties and Johnson–Cook model were adopted. Two tube configurations were considered in the numerical study; zero projection (flush) and 3 mm projection (extended). For validation purposes, HFDB of tube–tubesheet was experimentally performed on a 19 mm (¾ in.) ASTM 179 cold-drawn carbon steel tube into ASTM A516-70 tubesheet, considering a flush tube configuration. The tool–workpiece temperature was measured using infrared camera, and produced joints were sectioned and examined under optical microscope. A good agreement was found between numericaly estimated temperatures and material deformation with experimentaly measured ones. According to the estimated results, spring back of tube was found to negatively affect the joint integrity. Also, contact stresses during processing phase were found less in the projected tube (extended) as compared to the flush one.

References

1.
ASME
,
2004
, “ASME Boiler and Pressure Vessel Code VIII: An International Code,”
ASME
,
New York
, Standard No.
Division I UW-20
. https://www.academia.edu/7447851/ASME-VIII-1_Edtn_2004
2.
TEMA
,
2007
, “Standards of the Tubular Exchanger Manufacturers Association,” 9th ed.,
TEMA
, Tarrytown, NY, Standard No.
RCB-7.32
.http://www1.frm.utn.edu.ar/electromecanica/materias%20pagina%20nuevas/INSTALACIONES%20TERMICAS%20MECANICAS%20Y%20FRIGORIFICAS/material/apuntes/TEMA_9TH_EDITION_2007.pdf
3.
Adullah
,
S.
, and
Ezuber
,
H. M.
,
2011
, “
Repair of Tube–Tubesheet Weld Cracks in a Cracked Gas/Steam Heat Exchanger
,”
J. Failure Anal. Prev.
,
11
(
6
), pp.
611
617
.10.1007/s11668-011-9482-8
4.
Guo
,
C.
,
Han
,
C. J.
,
Tang
,
Y. M.
,
Zuo
,
Y.
, and
Lin
,
S. Z.
,
2011
, “
Failure Analysis of Welded 0Cr13Al Tube Bundle in a Heat Exchanger
,”
Eng. Failure Anal.
,
18
(
3
), pp.
890
894
.10.1016/j.engfailanal.2010.11.003
5.
Liu
,
L.
,
Ding
,
N.
,
Shi
,
J.
,
Xu
,
N.
,
Guo
,
W.
, and
Wu
,
C. M. L.
,
2016
, “
Failure Analysis of Tube-to-Tubesheet Welded Joints in a Shell-Tube Heat Exchanger
,”
Case Stud. Eng. Failure Anal.
,
7
, pp.
32
40
.10.1016/j.csefa.2016.06.002
6.
Otegui
,
J. L.
, and
Fazzini
,
P. G.
,
2004
, “
Failure Analysis of Tube–Tubesheet Welds in Cracked Gas Heat Exchangers
,”
Eng. Failure Anal.
,
11
(
6
), pp.
903
913
.10.1016/j.engfailanal.2004.01.003
7.
Xu
,
S.
, and
Zhao
,
Y.
,
2013
, “
Using FEM to Determine the Thermo-Mechanical Stress in Tube to Tube–Sheet Joint for the SCC Failure Analysis
,”
Eng. Failure Anal.
,
34
, pp.
24
34
.10.1016/j.engfailanal.2013.07.011
8.
Wan
,
Y.
,
Jiang
,
W.
, and
Luo
,
Y.
,
2017
, “
Using X-Ray Diffraction and Finite Element Method to Analyze Residual Stress of Tube-to-Tubesheet Welded Joints in a Shell and Tube Heat Exchanger
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051405
.10.1115/1.4037636
9.
Sui
,
R.
,
Wang
,
W.
,
Liu
,
Y.
,
Li
,
D.
, and
Li
,
W.
,
2014
, “
Root Cause Analysis of Stress Corrosion at Tube-to-Tubesheet Joints of a Waste Heat Boiler
,”
Eng. Failure Anal.
,
45
, pp.
398
405
.10.1016/j.engfailanal.2014.07.013
10.
Shuaib
,
A.
,
Merah
,
N.
, and
Bazoune
,
A.
,
2012
, “
Friction Stir Welding of Tube- Tubesheet Joints
,” KFUPM-Dhahran, Saudi Arabia, NSTIP Project No. 08-Adv66-04.
11.
Takeshita
,
R. P.
,
Brown
,
R. J.
,
Eller
,
M. R.
, and
Pham
,
D. N.
,
2013
, “Friction-Stir Weld-Tool and Method,” U.S. Patent No. 8,439,250.
12.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A. N.
, and
Bazoune
,
A.
,
2012
, “
Experimental and Finite Element Modeling of Friction Stir Seal Welding of Tube-Tubesheet Joint
,”
Adv. Mater. Res.
,
445
, pp.
771
776
.10.4028/www.scientific.net/AMR.445.771
13.
Al-Badour
,
F. A.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2014
, “
Residual Stresses in Friction Stir Welded Tube-Tubesheet Joint
,”
ASME
Paper No. PVP2014-28488. 10.1115/PVP2014-28488
14.
Al-Badour
,
F. A.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2015
, “
Experimental Investigation of Friction Stir Seal Welding of Tube–Tubesheet Joints
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011402
.10.1115/1.4027807
15.
Shuaib
,
A. R.
,
Al-Badour
,
F.
, and
Merah
,
N.
,
2015
, “
Friction Stir Seal Welding (FSSW) Tube-Tubesheet Joints Made of Steel
,”
ASME
Paper No. PVP2015-45550.10.1115/PVP2015-45550
16.
Merah
,
N.
,
Al-Badour
,
F. A.
,
Shuaib
,
A. N.
, and
Bazoune
,
A.
,
2014
, “Method and Tool for Friction Stir Welding,” U.S. Patent No. 8,857,696.
17.
Shuaib
,
A. N.
,
Merah
,
N.
,
Al-Badour
,
F. A.
, and
Bazoune
,
A.
,
2015
, “Apparatus for Joint Sealing Using Tube Expansion and Friction Welding,” U.S. Patent No.
9,067,279
.https://patents.google.com/patent/US9067279B1/en
18.
Roos
,
A.
, and
Dos Santos
,
J. F.
,
2006
, “
Process and Device for Producing a Weldment Between the Surfaces of Two Flat Workpieces With Total Running of the Contacting Surfaces of the Friction Stir Tool Into the Surface of the Second Workpiece Opposing the First Workpiece
,” European Patent EP No.
1,769-877
. https://patents.google.com/patent/EP1769877B1/en
19.
Roos
,
A.
,
Dos Santos
,
J.
, and
Wimmer
,
G.
,
2011
, “Method for Joining Tube Plates and Tubes as well as Friction Tool to Carry Out the Method,” U.S. Patent No.
7,954,691
. https://patents.google.com/patent/US7954691B2/en
20.
Dethlefs
,
A.
,
Roos
,
A.
,
Dos Santos
,
J. F.
, and
Wimmer
,
G.
,
2014
, “
Hybrid Friction Diffusion Bonding of Aluminium Tube-to-Tube-Sheet Connections in Coil-Wound Heat Exchangers
,”
Mater. Des.
,
60
, pp.
7
12
.10.1016/j.matdes.2014.03.049
21.
Kumaran
,
S. S.
, and
Das
,
A. D.
,
2018
, “
An Investigation of Boiler Grade Tube and Tube Plate Without Block by Using Friction Welding Process
,”
Mater. Today
,
5
(
2
), pp.
8567
8576
.10.1016/j.matpr.2017.11.554
22.
Haneklaus
,
N.
,
Reuven
,
R.
,
Cionea
,
C.
,
Hosemann
,
P.
, and
Peterson
,
P. F.
,
2016
, “
Tube Expansion and Diffusion Bonding of 316 L Stainless Steel Tube-to-Tube Sheet Joints Using a Commercial Roller Tube Expander
,”
J. Mater. Process. Technol.
,
234
, pp.
27
32
.10.1016/j.jmatprotec.2016.03.008
23.
Hbbani
,
A.
,
Al-Badour
,
F.
, and
Bazoune
,
A.
,
2017
, “
Tube Expansion and Hybrid Friction Diffusion Bonding of Cu-Ni and ASTM A516 G70 Tube-to-Tubesheet Joints
,”
ASME
Paper No. PVP2017-66064. 10.1115/PVP2017-66064
24.
Yokell
,
S.
,
1992
, “
Expanded, and Welded-and-Expanded Tube-to-Tubesheet Joints
,”
ASME. J. Pressure Vessel Technol.
,
114
(
2
), pp.
157
165
.10.1115/1.2929023
25.
Shuaib
,
A. N.
,
Merah
,
N.
,
Khraisheh
,
M. K.
,
Allam
,
I. M.
, and
Al-Anizi
,
S. S.
,
2003
, “
Experimental Investigation of Heat Exchanger Tubesheet Hole Enlargement
,”
ASME J. Pressure Vessel Technol.
,
125
(
1
), pp.
19
25
.10.1115/1.1533799
26.
ASTM
,
2001
, “Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate and Lower Temperature Service,”
ASTM International,
West Conshohocken, PA, Standard No.
ASTM A516/A516M-01
.https://www.astm.org/Standards/A516
27.
Elliott Tool Technologies
, “
Basic Principles of Tube Expanding
,” Elliott Tool Technologies, Dayton, OH, Report No.
TM-6 02-10-04
.https://www.elliott-tool.com/media/tools/Basic-Principles-of-Tube-Expanding.pdf
28.
Iqbal
,
Z.
,
Bazoune
,
A.
,
Al-Badour
,
F.
,
Shuaib
,
A.
, and
Merah
,
N.
,
2019
, “
Effect of Tool Rotational Speed on Friction Stir Welding of ASTM A516-70 Steel Using W–25% Re Alloy Tool
,”
Arabian J. Sci. Eng.
,
44
(
2
), pp.
1233
1242
.10.1007/s13369-018-3452-3
29.
Abaqus,
2016
, “
ALE Adaptive Meshing
, Abaqus Analysis User Manual,” Vol.
2
, Abaqus Analysis.http://130.149.89.49:2080/v6.14/pdf_books/ANALYSIS_2.pdf
30.
Mason
,
J. J.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
1994
, “
On the Strain and Strain Rate Dependence of the Fraction of Plastic Work Converted to Heat: An Experimental Study Using High Speed Infrared Detectors and the Kolsky Bar
,”
Mech. Mater.
,
17
(
2–3
), pp.
135
145
.10.1016/0167-6636(94)90054-X
31.
Nandan
,
R. G. G. R.
,
Roy
,
G. G.
,
Lienert
,
T. J.
, and
Debroy
,
T.
,
2007
, “
Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel
,”
Acta Mater.
,
55
(
3
), pp.
883
895
.10.1016/j.actamat.2006.09.009
32.
Zhang
,
Y. N.
,
Cao
,
X.
,
Larose
,
S.
, and
Wanjara
,
P.
,
2012
, “
Review of Tools for Friction Stir Welding and Processing
,”
Can. Metall. Q.
,
51
(
3
), pp.
250
261
.10.1179/1879139512Y.0000000015
33.
Schmidt
,
H.
, and
Hattel
,
J.
,
2005
, “
A Local Model for the Thermomechanical Conditions in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
1
), pp.
77
93
.10.1088/0965-0393/13/1/006
34.
Zhang
,
H. W.
,
Zhang
,
Z.
, and
Chen
,
J. T.
,
2007
, “
3D Modeling of Material Flow in Friction Stir Welding Under Different Process Parameters
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
62
70
.10.1016/j.jmatprotec.2006.09.027
35.
Mandal
,
S.
,
Rice
,
J.
, and
Elmustafa
,
A. A.
,
2008
, “
Experimental and Numerical Investigation of the Plunge Stage in Friction Stir Welding
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
411
419
.10.1016/j.jmatprotec.2007.10.067
36.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2013
, “
Coupled Eulerian Lagrangian Finite Element Modeling of Friction Stir Welding Processes
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1433
1439
.10.1016/j.jmatprotec.2013.02.014
37.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2014
, “
Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
607
617
.10.1007/s00170-014-5680-3
38.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics,
Hague, The Netherlands, Apr. 19–21, pp.
541
547
.https://www.scienceopen.com/document?vid=3e0958f1-d0dd-4475-a068-5dc192c6056f
39.
Mehrasa
,
H.
,
Liaghat
,
G.
, and
Javabvar
,
D.
,
2012
, “
Experimental Analysis and Simulation of Effective Factors on Explosive Forming of Spherical Vessel Using Prefabricated Four Cones Vessel Structures
,”
Open Eng.
,
2
(
4
), pp.
656
664
.10.2478/s13531-012-0036-y
40.
Brar
,
N. S.
,
Joshi
,
V. S.
, and
Harris
,
B. W.
,
2007
, “
Constitutive Model Constants for Low Carbon Steels From Tension and Torsion Data
,”
AIP Conf. Proc.
,
955
(
1
), pp.
627
630
.10.1063/1.2833171
41.
Nadimi
,
S.
,
Khoushehmehr
,
R. J.
,
Rohani
,
B.
, and
Mostafapour
,
A.
,
2008
, “
Investigation and Analysis of Weld Induced Residual Stresses in Two Dissimilar Pipes by Finite Element Modeling
,”
J. Appl. Sci.
,
8
(
6
), pp.
1014
1020
.https://scialert.net/fulltext/?doi=jas.2008.1014.1020
42.
Tanabe
,
T.
,
Eamchotchawalit
,
C.
,
Busabok
,
C.
,
Taweethavorn
,
S.
,
Fujitsuka
,
M.
, and
Shikama
,
T.
,
2003
, “
Temperature Dependence of Thermal Conductivity in W and W–Re Alloys From 300 to 1000 K
,”
Mater. Lett.
,
57
(
19
), pp.
2950
2953
.10.1016/S0167-577X(02)01403-9
43.
Assidi
,
M.
,
Fourment
,
L.
,
Guerdoux
,
S.
, and
Nelson
,
T.
,
2010
, “
Friction Model for Friction Stir Welding Process Simulation: Calibrations From Welding Experiments
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
143
155
.10.1016/j.ijmachtools.2009.11.008
44.
Dialami
,
N.
,
Chiumenti
,
M.
,
Cervera
,
M.
,
Segatori
,
A.
, and
Osikowicz
,
W.
,
2017
, “
Enhanced Friction Model for Friction Stir Welding (FSW) Analysis: Simulation and Experimental Validation
,”
Int. J. Mech. Sci.
,
133
, pp.
555
567
.10.1016/j.ijmecsci.2017.09.022
45.
Zhang
,
Z.
,
2008
, “
Comparison of Two Contact Models in the Simulation of Friction Stir Welding Process
,”
J. Mater. Sci.
,
43
(
17
), pp.
5867
5877
.10.1007/s10853-008-2865-x
46.
Adesina
,
A. Y.
,
Iqbal
,
Z.
,
Al-Badour
,
F. A.
, and
Gasem
,
Z. M.
,
2019
, “
Mechanical and Tribological Characterization of AlCrN Coated Spark Plasma Sintered W–25% Re–Hfc Composite Material for FSW Tool Application
,”
J. Mater. Res. Technol.
,
8
(
1
), pp.
436
446
.10.1016/j.jmrt.2018.04.004
47.
Pirso
,
J.
,
Letunovitš
,
S.
, and
Viljus
,
M.
,
2004
, “
Friction and Wear Behaviour of Cemented Carbides
,”
Wear
,
257
(
3–4
), pp.
257
265
.10.1016/j.wear.2003.12.014
48.
Merah
,
N.
,
Al-Aboodi
,
A.
,
Shuaib
,
A. N.
,
Al-Nassar
,
Y.
, and
Al-Anizi
,
S. S.
,
2009
, “
Combined Effects of Tube Projection, Initial Tube-Tubesheet Clearance, and Tube Material Strain Hardening on Rolled Joint Strength
,”
ASME J. Pressure Vessel Technol.
,
131
(
5
), p. 051201. 10.1115/1.3142387
49.
Shuaib
,
A. N.
,
Merah
,
N.
,
Ahmed
,
M.
,
Al-Nassar
,
Y. N.
, and
Al-Anizi
,
S. S.
,
2008
, “
Integrity of Roller-Expanded Tube-to-Tubesheet Joints With Overenlarged Tubesheet Holes
,”
ASME. J. Pressure Vessel Technol.
,
130
(
1
), p.
011203
.10.1115/1.2826429
50.
Al-Aboodi
,
A.
,
Merah
,
N.
,
Shuaib
,
A. R.
,
Al-Nassar
,
Y.
, and
Al-Anizi
,
S. S.
,
2008
, “
Modeling the Effects of Initial Tube-Tubesheet Clearance, Wall Reduction and Material Strain Hardening on Rolled Joint Strength
,”
ASME J. Pressure Vessel Technol.
,
130
(
4
), p. 041204.10.1115/1.2967809
51.
Shuaib
,
A. N.
,
Duffuaa
,
O. M.
,
Merah
,
N.
, and
Al-Nassar
,
Y.
,
2011
, “
Residual Stresses in Roller Expanded Tube-Tubesheet Joints With Large Initial Clearance and Grooves
,”
ASME J. Pressure Vessel Technol.
,
133
(
5
), p. 051211.10.1115/1.4003465
You do not currently have access to this content.