Abstract

Integrity planning methods and inline inspection (ILI) tool performance have a great impact on a pipeline integrity management program. In pipeline integrity planning, risk and integrity assessments are performed to schedule integrity activities like ILI for the purpose of reducing risks and ensuring reliable and safe operations. In this paper, a method is developed for analyzing the impact of ILI tool accuracy on pipeline integrity planning, which is of great importance but has not been systematically studied before. Crack inspection and threat of fatigue cracking are used as the working case for the analysis, although the approach could potentially be used for any pipeline threat type. The Paris' law degradation model is used for the crack growth and subsequent severity and risk assessment. We investigated the impact of ILI tool accuracy on the cost rate, as well as the associated inspection intervals. The impact on long-term cost rate was also investigated considering new defect generation and continuous growth. Sensitivity analyses were performed. The optimal inspection intervals and the corresponding total cost rates with respect to different ILI tool accuracy and different input parameters were obtained and compared. The proposed method can support integrity management program planning by linking risks with integrity plan costs associated with ILI accuracy and optimal re-assessment intervals. The contributions of this paper mainly include the investigation of the problem of how ILI tool accuracy impacts integrity planning, the development of the method for analyzing pipelines with cracks, and the verification and validation with the examples.

References

References
1.
Mohitpour
,
M.
,
Murray
,
A.
,
McManus
,
M.
, and
Colquhoun
,
I.
,
2010
,
Pipeline Integrity Assurance: A Practical Approach
,
American Society of Mechanical Engineers
,
New York
.10.1115/1.859568
2.
Zarea
,
M.
,
Piazza
,
M.
,
Vignal
,
G.
,
Jones
,
C.
,
Rau
,
J.
, and
Wang
,
R.
,
2013
, “
Review of R&D in Support of Mechanical Damage Threat Management in Onshore Transmission Pipeline Operations
,”
ASME
Paper No. IPC2012-90654.10.1115/IPC2012-90654
3.
PRCI,
2015
,
Year in Review
, Pipeline Research Council International, Chantilly, VA.https://www.prci.org/File.aspx?id=2414&v=a83086a7
4.
Xie
,
M.
, and
Tian
,
Z.
,
2018
, “
A Review on Pipeline Integrity Management Utilizing in-Line Inspection Data
,”
Eng. Fail. Anal.
,
92
, pp.
222
239
.10.1016/j.engfailanal.2018.05.010
5.
Maxey
,
W. A.
,
Kiefner
,
J. F.
,
Eiber
,
R. J.
, and
Duffy
,
A. R.
,
1972
, “
Ductile Fracture Initiation, Propagation, and Arrest in Cylindrical Vessels
,”
Fracture Toughness: Part II.
ASTM International
, West Conshohocken, PA.10.1520/STP38819S
6.
Eiber
,
R. J.
,
1981
,
The Effects of Dents on Failure Characteristics of Line Pipe
,
American Gas Association
, Washington, DC.
7.
Kiefner
,
J. F.
,
Maxey
,
W.
,
Eiber
,
R.
, and
Duffy
,
A.
,
1973
, “
Failure Stress Levels of Flaws in Pressurized Cylinders
,”
Progress in Flaw Growth and Fracture Toughness Testing
,
ASTM International
, West Conshohocken, PA.10.1520/STP49657S
8.
BSI
,
2013
, “
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,” British Standard Institution, London, UK, Standard No.
BS 7910: 2013+A1:2015
.https://shop.bsigroup.com/ProductDetail/?pid=000000000030346068
9.
B. S. Institution
,
1999
,
Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
British Standard Institution
, London, UK.
10.
Anderson
,
T. L.
, and
Osage
,
D. A.
,
2000
, “
API 579: A Comprehensive Fitness-for-Service Guide
,”
Int. J. Pressure Vessels Piping
,
77
(
14–15
), pp.
953
963
.10.1016/S0308-0161(01)00018-7
11.
Jaske
,
C. E.
,
1996
, “
CorLAS 1.0 User Manual: Computer Program for Corrosion-Life Assessment of Piping and Pressure Vessels
.”
12.
Jaske
,
C. E.
, and
Beavers
,
J. A.
,
1998
, “
Review and Proposed Improvement of a Failure Model for SCC of Pipelines
,”
ASME
Paper No. IPC1998-2051
. 10.1115/IPC1998-2051
13.
Jaske
,
C. E.
, and
Beavers
,
J. A.
,
2002
, “
Development and Evaluation of Improved Model for Engineering Critical Assessment of Pipelines
,”
ASME
Paper No. IPC2002-27027
. 10.1115/IPC2002-27027
14.
Hosseini
,
A.
,
Cronin
,
D.
,
Plumtree
,
A.
, and
Kania
,
R.
,
2010
, “
Experimental Testing and Evaluation of Crack Defects in Line Pipe
,”
ASME
Paper No. IPC2010-31158
. 10.1115/IPC2010-31158
15.
Xie
,
M.
, and
Tian
,
Z.
,
2018
, “
Risk-Based Pipeline Re-Assessment Optimization Considering Corrosion Defects
,”
Sustain. Cities Soc.
,
38
, pp.
746
757
.10.1016/j.scs.2018.01.021
16.
Zhang
,
S.
, and
Zhou
,
W.
, Sep.
2014
, “
Cost-Based Optimal Maintenance Decisions for Corroding Natural Gas Pipelines Based on Stochastic Degradation Models
,”
Eng. Struct.
,
74
, pp.
74
85
.10.1016/j.engstruct.2014.05.018
17.
Fessler
,
R. R.
, and
Rapp
,
S.
,
2006
, “
Method for Establishing Hydrostatic Re-Test Intervals for Pipelines With Stress-Corrosion Cracking
,”
ASME
Paper No. IPC2006-10163
.10.1115/IPC2006-10163
18.
Xie
,
M.
,
Bott
,
S.
,
Sutton
,
A.
,
Nemeth
,
A.
, and
Tian
,
Z.
,
2018
, “
An Integrated Prognostics Approach for Pipeline Fatigue Crack Growth Prediction Utilizing Inline Inspection Data
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031702
.10.1115/1.4039780
19.
Gomes
,
W. J. S.
, and
Beck
,
A. T.
,
2014
, “
Optimal Inspection Planning and Repair Under Random Crack Propagation
,”
Eng. Struct.
,
69
, pp.
285
296
.10.1016/j.engstruct.2014.03.021
20.
Xie
,
M.
,
Tian
,
Z.
,
Sutherland
,
J.
,
Fang
,
B.
, and
Gu
,
B.
,
2018
, “
A Method to Analyze the Impact of Inline Inspection Accuracy on Integrity Management Program Planning of Pipelines
,”
ASME
Paper No. IPC2018-78423
. 10.1115/IPC2018-78423
21.
Caleyo
,
F.
,
González
,
J. L.
, and
Hallen
,
J. M.
,
2002
, “
A Study on the Reliability Assessment Methodology for Pipelines With Active Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
77
86
.10.1016/S0308-0161(01)00124-7
22.
Nielsen
,
A.
,
Mallet-Paret
,
J.
, and
Griffin
,
K.
,
2014
, “
Probabilistic Modeling of Crack Threats and the Effects of Mitigation
,”
ASME
Paper No. IPC2014-33511
. 10.1115/IPC2014-33511
23.
Sutton
,
A.
,
Hubert
,
Y.
,
Textor
,
S.
, and
Haider
,
S.
,
2014
, “
Allowable Pressure Cycling Limits for Liquid Pipelines
,”
ASME
Paper No. IPC2014-33566
. 10.1115/IPC2014-33566
24.
Zhao
,
F.
,
Tian
,
Z.
, and
Zeng
,
Y.
,
2013
, “
Uncertainty Quantification in Gear Remaining Useful Life Prediction Through an Integrated Prognostics Method
,”
IEEE Trans. Reliab.
,
62
(
1
), pp.
146
159
.10.1109/TR.2013.2241216
25.
Bott
,
S.
, and
Sporns
,
R.
,
2009
, “
The Benefits and Limitations of Using Risk Based Probabilistic and Deterministic Analysis for Monitoring and Mitigation Planning
,”
ASME
Paper No. IPC2008-64539
. 10.1115/IPC2008-64539
26.
API and ASME
,
2016
, “
Fitness-For-Service
,” American Petroleum Institute, Washington, DC, Standard No.
API 579-1/ASME FFS-1
.https://inspectioneering.com/tag/fitness+for+service
27.
API Standard
,
2001
, “1160 Managing System Integrity for Hazardous Liquid Pipelines,” 1st ed.,
American Petroleum Institute
, Washington, DC, Standard No.
1160
.https://global.ihs.com/doc_detail.cfm?document_name=API%20STD%201160&item_s_key=00365236
28.
Zhou
,
W.
, and
Nessim
,
M. A.
,
2011
, “
Optimal Design of Onshore Natural Gas Pipelines
,”
ASME J. Pressure Vessels Technol.
,
133
(
3
), p.
031702
.10.1115/1.4002496
29.
Valor
,
A.
,
Caleyo
,
F.
,
Alfonso
,
L.
,
Velázquez
,
J. C.
, and
Hallen
,
J. M.
,
2013
, “
Markov Chain Models for the Stochastic Modeling of Pitting Corrosion
,”
Math. Probl. Eng.
,
2013
, pp.
1
13
.10.1155/2013/108386
30.
Cronvall
,
O.
, and
Männistö
,
I.
,
2011
, “
Applications Concerning OECD Pipe Failure Database OPDE (Research Report)
,” VTT Technical Research Centre of Finland, Espoo, Finland, Report No.
VTT-R-00416-11
.https://www.vttresearch.com/sites/default/files/julkaisut/muut/2011/VTT-R-00416-11.pdf
31.
Lydell
,
B.
,
Mathet
,
E.
, and
Gott
,
K.
,
2004
, “
Piping Service Life Experience in Commercial Nuclear Power Plants: Progress With the OECD Pipe Failure Data Exchange Project
,”
ASME
Paper No. PVP2004-2961
. 10.1115/PVP2004-2961
32.
Paramonov
,
Y.
,
Chatys
,
R.
,
Andersons
,
J.
, and
Kleinhofs
,
M.
,
2012
, “
Markov Model of Fatigue of a Composite Material With the Poisson Process of Defect Initiation
,”
Mech. Compos. Mater.
,
48
(
2
), pp.
217
228
.10.1007/s11029-012-9267-5
33.
Castanier
,
B.
, and
Yeung
,
T. G.
,
2008
, “
Optimal Highway Maintenance Policies Under Uncertainty
,”
Annual Reliability and Maintainability Symposium
, Las Vegas, NV, Jan. 28–31, pp.
25
30
.10.1109/RAMS.2008.4925764
34.
Adianto
,
R. H.
,
Skow
,
J. B.
, and
Sutherland
,
J.
,
2016
, “
The Benefits of Accurate ILI Performance on Pipeline Integrity Programs for Axial Crack and Metal Loss Corrosion Threats
,”
ASME
Paper No. IPC2016-64612
.10.1115/IPC2016-64612
35.
ForemanBott
,
G.
,
Sutherland
,
S. J.
, and
Tappert
,
S.
,
2016
, “
The Development and Use of an Absolute Depth Size Specification in ILI-Based Crack Integrity Management of Pipelines
,”
ASME
Paper No. IPC2016-64224
. 10.1115/IPC2016-64224
You do not currently have access to this content.