Abstract

A polyethylene pipe reinforced by winding steel wires (PSP) has been widely used in the petroleum, chemical, and water supply industries. The PSP has outstanding mechanical properties due to its unique composite structure. However, interfacial debonding between steel wire and adhesive sometimes occurs when the temperature and inner pressure increases to some extent in the application. In this study, the interfacial behavior between steel wire and adhesive was investigated and the interfacial failure process was analyzed. First, to acquire test data of interfacial failure, pull-out tests were conducted using specimens consisted of steel wire and adhesive. Specimens were prepared per the PSP manufacturing process, and a temperature change occurred in the specimens' preparation. Second, as the details of failure process could not be observed directly, finite element models were established to represent the mechanical behavior of the steel-polymer interface in-order to reproduce the debonding failure process. The thermal preload was taken into account in the model, and its influence on interfacial behavior was discussed. Contact surface with cohesive behavior was utilized to characterize the interfacial property. Finally, the interfacial failure process including stick–slip interaction and frictional sliding interaction was modeled in the simulation. The simulation result agreed well with the experimental data. Based on the finite element model, the cause and the distribution of thermal residual stress in pull-out specimen were illuminated. Further, it is discussed that how the stress distribution changes along the adhesive interface.

References

1.
Shi
,
J.
,
Shi
,
J.
,
Chen
,
H.
,
He
,
Y.
,
Wang
,
Q.
,
Zhang
,
Y.
, and
Li
,
G.
,
2018
, “
Short-Term Mechanical Analysis of Polyethylene Pipe Reinforced by Winding Steel Wires Using Steel Wire Spiral Structural Model
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031404
.10.1115/1.4039344
2.
Shi
,
J.
,
2016
, “
Research on Bulge Failure in the Joint of Polyethylene Pipe Reinforced by Winding Steel Wires Owing to Steel/Polymer Interfacial Debonding
,”
Zhejiang University
,
Hangzhou, China
.
3.
Zhang
,
J.
,
Shi
,
J.
, and
Xu
,
P.
,
2017
, “
Investigation of Interfacial Debonding Between Steel Wire and Adhesive Resin
,”
J. Appl. Polym. Sci.
,
134
(
33
), p.
45064
.10.1002/app.45064
4.
Pisanova
,
E.
,
Zhandarov
,
S.
,
Mäder
,
E.
,
Ahmad
,
I.
, and
Young
,
R.
,
2001
, “
Three Techniques of Interfacial Bond Strength Estimation From Direct Observation of Crack Initiation and Propagation in Polymer–Fibre Systems
,”
Compos. Part A Appl. Sci. Manuf.
,
32
(
3–4
), pp.
435
–4
43
.10.1016/S1359-835X(00)00054-3
5.
Zhandarov
,
S. F.
, and
Pisanova
,
E. V.
,
1997
, “
The Local Bond Strength and Its Determination by Fragmentation and Pull-Out Tests
,”
Compos. Sci. Technol.
,
57
(
8
), pp.
957
964
.10.1016/S0266-3538(97)00037-7
6.
Sato
,
M.
,
Imai
,
E.
,
Koyanagi
,
J.
,
Ishida
,
Y.
, and
Ogasawara
,
T.
,
2017
, “
Evaluation of the Interfacial Strength of Carbon-Fiber-Reinforced Temperature-Resistant Polymer Composites by the Micro-Droplet Test
,”
Adv. Compos. Mater.
,
26
(
5
), pp.
465
476
.10.1080/09243046.2017.1284638
7.
Budarapu
,
P. R.
,
Kumar
,
S.
,
Prusty
,
B. G.
, and
Paggi
,
M.
,
2019
, “
Stress Transfer Through the Interphase in Curved-Fiber Pullout Tests of Nanocomposites
,”
Compos. Part B Eng.
,
165
, pp.
417
434
.10.1016/j.compositesb.2018.12.116
8.
Mao
,
Y. W.
,
Yu
,
S.
,
Zhang
,
Y. Z.
,
Guo
,
B. B.
,
Ma
,
Z. B.
, and
Deng
,
Q. R.
,
2015
, “
Microstructure Analysis of Graphite/Cu Joints Brazed With (Cu-50TiH(2)) + B Composite Filler
,”
Fusion Eng. Des.
,
100
, pp.
152
158
.10.1016/j.fusengdes.2015.05.011
9.
Barenblatt
,
G.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
10.
Dugdale
,
D.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
11.
Liu
,
P.
,
Chu
,
J.
,
Hou
,
S.
, and
Zheng
,
J.
,
2012
, “
Micromechanical Damage Modeling and Multiscale Progressive Failure Analysis of Composite Pressure Vessel
,”
Comput. Mater. Sci.
,
60
, pp.
137
148
.10.1016/j.commatsci.2012.03.015
12.
Hirsch
,
F.
,
Müller
,
S.
,
Machens
,
M.
,
Staschko
,
R.
,
Fuchs
,
N.
, and
Kästner
,
M.
,
2017
, “
Simulation of Self-Piercing Rivetting Processes in Fibre Reinforced Polymers: Material Modelling and Parameter Identification
,”
J. Mater. Process. Technol.
,
241
, pp.
164
177
.10.1016/j.jmatprotec.2016.10.010
13.
Danzi
,
F.
,
Fanteria
,
D.
,
Panettieri
,
E.
, and
Palermo
,
M.
,
2017
, “
A Numerical Micro-Mechanical Study of the Influence of Fiber-Matrix Interphase Failure on Carbon/Epoxy Material Properties
,”
Compos. Struct.
,
159
, pp.
625
635
.10.1016/j.compstruct.2016.09.095
14.
Panettieri
,
E.
,
Fanteria
,
D.
, and
Firrincieli
,
A.
,
2015
, “
Damage Initialization Techniques for Non-Sequential fe Propagation Analysis of Delaminations in Composite Aerospace Structures
,”
Meccanica
,
50
(
10
), pp.
2569
2585
.10.1007/s11012-015-0214-0
15.
Turon
,
A.
,
Camanho
,
P. P.
,
Costa
,
J. D.
, and
Avila
,
C. G.
,
2006
, “
A Damage Model for the Simulation of Delamination in Advanced Composites Under Variable-Mode Loading
,”
Mech. Mater.
,
38
(
11
), pp.
1072
1089
.10.1016/j.mechmat.2005.10.003
16.
Deng
,
K. J.
,
Yu
,
Z. X.
,
Zhou
,
J. Q.
,
Liu
,
H. X.
, and
Zhang
,
S.
,
2013
, “
Atomistically Derived Metal-Ceramic Interfaces Cohesive Law Based on the Van Der Waals Force
,”
Eng. Fract. Mech.
,
111
, pp.
98
105
.10.1016/j.engfracmech.2013.09.007
17.
Li
,
D.
,
Yang
,
Q. S.
,
Liu
,
X.
, and
He
,
X. Q.
,
2017
, “
Experimental and Cohesive Finite Element Investigation of Interfacial Behavior of CNT Fiber-Reinforced Composites
,”
Compos. Part A-Appl. Sci. Manuf.
,
101
, pp.
318
325
.10.1016/j.compositesa.2017.06.033
18.
Guo
,
S. J.
,
Yang
,
Q. S.
,
He
,
X. Q.
, and
Liew
,
K. M.
,
2014
, “
Modeling of Interface Cracking in Copper-Graphite Composites by MD and CFE Method
,”
Compos. Part B Eng.
,
58
, pp.
586
592
.10.1016/j.compositesb.2013.10.042
19.
Sato
,
M.
,
Koyanagi
,
J.
,
Lu
,
X.
,
Kubota
,
Y.
,
Ishida
,
Y.
, and
Tay
,
T. E.
,
2018
, “
Temperature Dependence of Interfacial Strength of Carbon Fiber-Reinforced Temperature-Resistant Polymer Composites
,”
Compos. Struct.
,
202
(
SI
), pp.
283
289
.10.1016/j.compstruct.2018.01.079
20.
Nian
,
G. D.
,
Li
,
Q. Y.
,
Xu
,
Q.
, and
Qu
,
S. X.
,
2018
, “
A Cohesive Zone Model Incorporating a Coulomb Friction Law for fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
157
, pp.
195
201
.10.1016/j.compscitech.2018.01.037
21.
Jia
,
Y.
,
Yan
,
W.
, and
Liu
,
H.-Y.
,
2012
, “
Carbon Fibre Pullout Under the Influence of Residual Thermal Stresses in Polymer Matrix Composites
,” 
Comput. Mater. Sci.
, 62, pp.
79
86
.10.1016/j.commatsci.2012.05.019
22.
Sockalingam
,
S.
,
Dey
,
M.
,
Gillespie
,
J.
, and
Keefe
,
M.
,
2014
, “
Finite Element Analysis of the Microdroplet Test Method Using Cohesive Zone Model of the Fiber/Matrix Interface
,”
Compos. Part A Appl. Sci. Manuf.
,
56
, pp.
239
247
.10.1016/j.compositesa.2013.10.021
23.
Li
,
X.
,
Zheng
,
J.
,
Li
,
Y.
,
Xu
,
P.
,
Zheng
,
C.
,
Shao
,
T.
,
Shao
,
H.
,
Chen
,
D.
,
Li
,
G.
, and
He
,
X.
,
2010
, “
Long-Term Stress Analysis of Plastic Pipe Reinforced by Cross-Winding Steel Wire
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041201
.10.1115/1.4001424
24.
Smith
,
M.
,
2014
, “
ABAQUS/Standard User's Manual, Version 6.14
,” Simulia, Providence, RI.
25.
Koyanagi
,
J.
,
Ogihara
,
S.
,
Nakatani
,
H.
,
Okabe
,
T.
, and
Yoneyama
,
S.
,
2014
, “
Mechanical Properties of Fiber/Matrix Interface in Polymer Matrix Composites
,”
Adv. Compos. Mater.
,
23
(
5–6
), pp.
551
570
.10.1080/09243046.2014.915125
26.
Koyanagi
,
J.
,
Nakatani
,
H.
, and
Ogihara
,
S.
,
2012
, “
Comparison of Glass–Epoxy Interface Strengths Examined by Cruciform Specimen and Single-Fiber Pull-Out Tests Under Combined Stress State
,”
Compos. Part A Appl. Sci. Manuf.
,
43
(
11
), pp.
1819
1827
.10.1016/j.compositesa.2012.06.018
27.
ABAQUS
,
2014
, “
User's and Theory Manual Version
,”
ABAQUS
,
Velizy-Villacoublay, France
.
You do not currently have access to this content.