Abstract

In the present work, a transient heat transfer problem induced by internal combustion of energetic materials was studied. Most of previous studies utilized a lumped-parameter model to predict the parameter distributions of the hot combustion products, which determine the boundary conditions for the transient heat transfer problem. Moreover, the heat exchange between the solids and the fluids was ignored in the combustion model. In order to improve the modeling accuracy, a one-dimensional (1D) two-phase flow model was utilized to predict the fluid fields and the heat exchange was coupled into the combustion model. Based on the commercial software abaqus, the transient heat transfer in the combustion chamber was studied using a finite element method. The meshes near the inner surface were refined to capture the high temperature gradients along the radial direction of the barrel. Results indicate that the coupled model is capable of solving the transient heat transfer problems heated by distributed moving heat sources. The coupled computational framework provides foundations for the study of local wear and erosion of solids in extreme working conditions.

References:

References:
1.
Pammer
,
Z.
,
1980
, “
A Mesh Refinement Method for Transient Heat Conduction Problems Solved by Finite Elements
,”
Int. J. Numer. Methods Eng.
,
15
(
4
), pp.
495
505
.10.1002/nme.1620150403
2.
Mishra
,
A.
,
Hameed
,
A.
, and
Lawton
,
B.
,
2010
, “
A Novel Scheme for Computing Gun Barrel Temperature History and Its Experimental Validation
,”
ASME J. Press. Vessel Technol.
,
132
(
6
), p.
061202
.10.1115/1.4001740
3.
Değirmenci
,
E.
, and
Hüsnü Dirikolu
,
M.
,
2012
, “
A Thermochemical Approach for the Determination of Convection Heat Transfer Coefficients in a Gun Barrel
,”
Appl. Therm. Eng.
,
37
, pp.
275
279
.10.1016/j.applthermaleng.2011.11.029
4.
Lee
,
H. L.
,
Yang
,
Y. C.
,
Chang
,
W. J.
, and
Wu
,
T. S.
,
2009
, “
Estimation of Heat Flux and Thermal Stresses in Multilayer Gun Barrel With Thermal Contact Resistance
,”
Appl. Math. Comput.
,
209
(
2
), pp.
211
221
.10.1016/j.amc.2008.12.038
5.
Wu
,
B.
,
Chen
,
G.
, and
Xia
,
W.
,
2008
, “
Heat Transfer in a 155 Mm Compound Gun Barrel With Full Length Integral Midwall Cooling Channels
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
881
888
.10.1016/j.applthermaleng.2007.07.010
6.
Chen
,
T.-C.
,
Liu
,
C.-C.
,
Jang
,
H.-Y.
, and
Tuan
,
P.-C.
,
2007
, “
Inverse Estimation of Heat Flux and Temperature in Multi-Layer Gun Barrel
,”
Int. J. Heat Mass Transf.
,
50
(
11–12
), pp.
2060
2068
.10.1016/j.ijheatmasstransfer.2006.11.022
7.
Sun
,
Y.
, and
Zhang
,
X.
,
2015
, “
Transient Heat Transfer of a Hollow Cylinder Subjected to Periodic Boundary Conditions
,”
ASME J. Press. Vessel Technol.
,
137
(
5
), p.
051303
.10.1115/1.4029757
8.
Sun
,
Y.
, and
Zhang
,
X.
,
2015
, “
Heat Transfer Analysis of a Circular Pipe Heated Internally With a Cyclic Moving Heat Source
,”
Int. J. Therm. Sci.
,
90
, pp.
279
289
.10.1016/j.ijthermalsci.2014.12.009
9.
Değirmenci
,
E.
,
Evci
,
C.
,
Işık
,
H.
,
Macar
,
M.
,
Yılmaz
,
N.
,
Dirikolu
,
M. H.
, and
Çelik
,
V.
,
2016
, “
Thermo-Mechanical Analysis of Double Base Propellant Combustion in a Barrel
,”
Appl. Therm. Eng.
,
102
, pp.
1287
1299
.10.1016/j.applthermaleng.2016.04.062
10.
Anderson
,
R. D.
, and
Fickie
,
K. D.
,
1987
,
IBHVG2 (Interior Ballistics of High Velocity Guns, Version 2)–a User’s Guide
,
US Army Research Laboratory
,
Aberdeen Proving Ground, MD
.
11.
Wildegger-Gaissmaier
,
A. E.
, and
Johnston
,
I. R.
,
1996
, “
Ignition of a Granular Propellant Bed
,”
Combust. Flame
,
106
(
3
), pp.
219
230
.10.1016/0010-2180(95)00261-8
12.
Miura
,
H.
,
Matsuo
,
A.
, and
Nakamura
,
Y.
,
2011
, “
Three-Dimensional Simulation of Pressure Fluctuation in a Granular Solid Propellant Chamber Within an Ignition Stage
,”
Propellants Explos. Pyrotech.
,
36
(
3
), pp.
259
267
.10.1002/prep.201000058
13.
Miura
,
H.
,
Matsuo
,
A.
, and
Nakamura
,
Y.
,
2008
, “
Multi-Dimensional Simulation on Ignition Stage of Granular Solid Propellant Varying Primer Configuration
,”
Int. J. Energy Mater. Chem. Propulsion
,
7
(
6
), pp.
507
522
.10.1615/IntJEnergeticMaterialsChemProp.v7.i6.40
14.
Jaramaz
,
S.
,
Micković
,
D.
, and
Elek
,
P.
,
2011
, “
Two-Phase Flows in Gun Barrel: Theoretical and Experimental Studies
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
475
487
.10.1016/j.ijmultiphaseflow.2011.01.003
15.
Cheng
,
C.
, and
Zhang
,
X.
,
2015
, “
Two-Dimensional Numerical Simulation of Gas-Solid Reactive Flow With Moving Boundary
,”
Combust. Sci. Technol.
,
187
(
7
), pp.
977
998
.10.1080/00102202.2014.993030
16.
Miura
,
H.
,
Matsuo
,
A.
, and
Nakamura
,
Y.
,
2013
, “
Numerical Prediction of Interior Ballistics Performance of Projectile Accelerator Using Granular or Tubular Solid Propellant
,”
Propellants, Explos. Pyrotech.
,
38
(
2
), pp.
204
213
.10.1002/prep.201200084
17.
Beckstead
,
M. W.
,
Puduppakkam
,
K.
,
Thakre
,
P.
, and
Yang
,
V.
,
2007
, “
Modeling of Combustion and Ignition of Solid-Propellant Ingredients
,”
Prog. Energy Combust. Sci.
,
33
(
6
), pp.
497
551
.10.1016/j.pecs.2007.02.003
18.
Hu
,
C.
, and
Zhang
,
X.
,
2019
, “
A Riemann Problem Based Coupling Method for Predicting the Combustion of Propellant in a Gun Launching Process
,”
Propellants Explos. Pyrotech.
,
44
(
6
), pp.
751
758
.10.1002/prep.201800293
19.
Yuan
,
Y.
, and
Zhang
,
X.
,
2005
,
Multiphase Hydrokinetic Foundation of High Temperature and High Pressure
,
Harbin Institute of Technology Press
,
Harbin, China
.
20.
Sopok
,
S.
,
Rickard
,
C.
, and
Dunn
,
S.
,
2005
, “
Thermal–Chemical–Mechanical Gun Bore Erosion of an Advanced Artillery System Part Two: Modeling and Predictions
,”
Wear
,
258
(
1–4
), pp.
671
683
.10.1016/j.wear.2004.09.030
You do not currently have access to this content.