Abstract

Low stress interrupted creep test, as an interim compromise, can provide essential data for creep deformation design. However, there are no clear guidelines on the characterization of the terminating time for interrupted low-stress creep test. To obtain a suitable terminating time in terms of economy and effectiveness, long-term creep strain data of 9%Cr steels are collected from literatures and their creep deformation characterization is analyzed. First, the variations of normalized time and strain of each creep stage with the stress level are discussed. Then, the effect of the terminating time on final fitted results of Norton–Bailey equation is estimated. Third, the relationship between demarcation points at different creep stages and minimum/steady-state creep rate is analyzed. The results indicate that when the creep rupture life is considered as an important factor for creep design, the tertiary creep stage is of greatest significance due to the largest life fraction and creep strain fraction at low stress level. However, the primary and secondary creep stages are of great significance for design due to their larger contribution to 1% limited creep strain. And the long-term secondary creep data could be extrapolated by combining the primary creep strain data obtained from interrupted creep tests with the time to onset of tertiary creep derived from a similar Monkman–Grant relationship.

References

References
1.
Boyle
,
J. T.
,
2012
, “
The Creep Behavior of Simple Structures With a Stress Range-Dependent Constitutive Model
,”
Arch. Appl. Mech.
,
82
(
4
), pp.
495
514
.10.1007/s00419-011-0569-1
2.
Viswanathan
,
R.
,
1989
,
Damage Mechanisms and Life Assessment of High-Temperature Components
,
ASM International
,
Geauga, OH
.
3.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time-Dependent Relationship for Rupture and Creep Stresses
,”
Trans. ASME
,
74
(
5
), pp.
765
775
.
4.
Sandstrom
,
R.
,
1999
, “
Extrapolation of Creep Strain Data for Pure Copper
,”
J. Test. Eval.
,
27
(
1
), pp.
31
35
.10.1520./JTE12037J
5.
Hosseini
,
E.
,
Holdsworth
,
S. R.
, and
Mazza
,
E.
,
2015
, “
A Review of the LICON Methodology for Predicting the Long Term Creep
,”
Int. J. Pressure Vessel. Pip.
,
129–130
, pp.
12
18
.10.1016/j.ijpvp.2015.03.003
6.
Guo
,
J. Q.
,
Li
,
F.
,
Zheng
,
X. T.
,
Shi
,
H. C.
, and
Meng
,
W. Z.
,
2016
, “
An Accelerated Method for Creep Prediction From Short Term Stress Relaxation Tests
,”
ASME J. Pressure Vessel Technol.
,
138
, p.
031401
.10.1115/1.4032109
7.
Cao
,
T. S.
,
Zhao
,
J.
,
Cheng
,
C. Q.
, and
Li
,
H. F.
,
2016
, “
The Application of Stress-Relaxation Test to Life Assessment of T911/T22 Weld Metal
,”
J. Mater. Eng. Perform.
,
25
(
3
), pp.
1103
1108
.10.1007/s11665-016-1935-5
8.
Wilshire
,
B.
, and
Scharning
,
P. J.
,
2008
, “
A New Methodology for Analysis of Creep and Creep Fracture Data for 9–12% Chromium Steels
,”
Int. Mater. Rev.
,
53
(
2
), pp.
91
104
.10.1179/174328008X254349
9.
Wilshire
,
B.
, and
Battenbough
,
A. J.
,
2007
, “
Creep and Creep Fracture of Polycrystalline Copper
,”
Mater. Sci. Eng. A
,
443
(
1–2
), pp.
156
166
.10.1016/j.msea.2006.08.094
10.
Holmström
,
S.
,
2010
, “
Engineering Tools for Robust Creep Modeling
,”
Ph.D. thesis
,
The Aalto University School of Science and Technology
, Otakaari 4, Espoo, Finland.https://www.researchgate.net/publication/258997399_Engineering_Tools_for_Robust_Creep_Modeling
11.
Xu
,
H.
,
Yuan
,
J.
, and
Ni
,
Y. Z.
,
2013
, “
Primary Creep Process of P92 Steel Based on Norton-Bailey Model
,”
J. Mater. Sci. Eng.
,
31
(
4
), pp.
568
567
(in Chinese).
12.
Norton
,
F. N.
,
1929
,
The Creep of Steel at High Temperature
,
McGraw-Hill
,
New York
.
13.
Esposito
,
L.
, and
Bonora
,
N.
,
2011
, “
A Primary Creep Model for Class M Materials
,”
Mater. Sci. Eng. A
,
528
(
16–17
), pp.
5496
5501
.10.1016/j.msea.2011.03.069
14.
Prager
,
M.
,
2000
, “
The Omega Method-an Engineering Approach to Life Assessment
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
273
280
.10.1115/1.556184
15.
Choudhary
,
B. K.
,
Phaniraj
,
C.
, and
Raj
,
B.
,
2010
, “
Interesting Relationships for Creep Deformation and Damage and Their Applicability for 9Cr-1Mo Ferritic Steel
,”
Trans. Indian Inst. Met.
,
63
(
2–3
), pp.
675
680
.10.1007/s12666-010-0103-0
16.
Choudhary
,
B. K.
,
2013
, “
Tertiary Creep Behaviour of 9Cr-1Mo Ferritic Steel
,”
Mater. Sci. Eng. A
,
585
, pp.
1
9
.10.1016/j.msea.2013.07.026
17.
Kimura
,
K.
,
Kushima
,
H.
, and
Sawada
,
K.
,
2009
, “
Long-Term Creep Deformation Property of Modified 9Cr-1Mo Steel
,”
Mater. Sci. Eng. A
,
510–511
, pp.
58
63
.10.1016/j.msea.2008.04.095
18.
Shrestha
,
T.
,
Basirat
,
M.
,
Charit
,
I.
,
Potirniche
,
G. P.
,
Rink
,
K. K.
, and
Sahaym
,
U.
,
2012
, “
Creep Deformation Mechanisms in Modified 9Cr–1Mo Steel
,”
J. Nucl. Mater
,
423
(
1–3
), pp.
110
119
.10.1016/j.jnucmat.2012.01.005
19.
Kimura
,
K.
,
Sawada
,
K.
,
Kushima
,
H.
, and
Kubo
,
K.
,
2008
, “
Effect of Stress on the Creep Deformation of ASME Grade P92/T92 Steels
,”
Int. J. Mat. Res
,
99
(
4
), pp.
395
401
.10.3139/146.101651
20.
Kimura
,
K.
,
Sawada
,
K.
, and
Kushima
,
H.
,
2010
, “
Creep Deformation Properties of Creep Strength Enhanced Ferritic Steels
,”
Trans. Indian Inst. Met.
,
63
(
2–3
), pp.
123
129
.10.1007/s12666-010-0017-x
21.
Kimura
,
K.
,
Sawada
,
K.
,
Kushima
,
H.
, and
Toda
,
Y.
,
2013
, “
Influence of Chemical Composition and Heat Treatment on Long-Term Creep Strength of Grade 91 Steel
,”
Procedia Eng.
,
55
, pp.
2
9
.10.1016/j.proeng.2013.03.211
22.
ASME
,
2013
, “
ASME Boiler and Pressure Vessel Code, III-NH, Class 1 Components in Elevated Temperature Service
,” American Society of Mechanical Engineers, New York.
23.
Gray
,
V.
, and
Whittaker
,
M.
,
2015
, “
The Changing Constants of Creep: A Letter on Region Splitting in Creep Lifing
,”
Mater. Sci. Eng. A
,
632
, pp.
96
102
.10.1016/j.msea.2015.02.059
24.
Boyle
,
J. T.
,
2011
, “
The Behavior of Structures Based on the Characteristic Strain Model of Creep
,”
Int. J. Pressure Vessel. Pip.
,
88
(
11–12
), pp.
473
481
.10.1016/j.ijpvp.2011.08.002
25.
Takazawa
,
H.
, and
Yanagida
,
N.
,
2014
, “
Effect of Creep Constitutive Equations on Simulated Stress Mitigation Behavior of Alloy Steel Pipe During Post-Weld Heat Treatment
,”
Int. J. Pressure Vessel Pip.
,
117–118
, pp.
42
48
.10.1016/j.ijpvp.2013.10.008
You do not currently have access to this content.