Abstract

As one of the most important means of nature gas peak shaving and energy strategic reserving, the reliability assessment of underground gas storage (UGS) system is necessary. Although many methods have been proposed for system reliability assessment, the functional heterogeneity of components and the influence of hydrothermal parameters on system reliability are neglected. To overcome these problems, we propose and apply a framework to assess UGS system reliability. Combining two-layer Monte Carlo simulation (MCS) technique with hydrothermal calculation, the framework integrates dynamic functional reliability of components into system reliability evaluation. To reflect the state transition process of repairable components and their impact on system reliability, the Markov model is introduced at system level. In order to improve the calculation speed, artificial neural network (ANN) model based on off-line MCS is established to replace the on-line MCS at components level. The proposed framework is applied to the reliability assessment and operation optimization of an UGS under different operation conditions. Compared with the traditional single-layer MCS method, the proposed method can not only reflect the variation of UGS reliability with hydrothermal parameters and operation time, but also can improve evaluation efficiency significantly.

References

References
1.
Bašová
,
A.
,
2016
, “
Securing Gas Supply Using Underground Storage
,”
Soc. Econ. Rev.
, 14(6), pp.
6
14
.
2.
Ding
,
G.
,
2011
, “
Demand and Challenges for Underground Gas Storages in China
,”
Nat. Gas Ind.
,
31
(
12
), pp.
90
93
.http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201112023.htm
3.
Evans
,
D. J.
,
2009
, “
A Review of Underground Fuel Storage Events and Putting Risk Into Perspective With Other Areas of the Energy Supply Chain
,”
Geol. Soc., London, Spec. Publ.
,
313
(
1
), pp.
173
216
.10.1144/SP313.12
4.
Civan
,
F.
,
2016
, “
Chapter 15—Reservoir Stress-Induced Formation Damage: Formation Compaction, Subsidence, Sanding Tendency, Sand Migration, Prediction and Control, and Gravel-Pack Damage
,” Reservoir Formation Damage, Gulf Professional Publishing, Houston, TX, pp.
419
443
.10.1016/B978-0-12-801898-9.00015-1
5.
Lee
,
H.
,
Ong
,
S. H.
,
Azeemuddin
,
M.
, and
Goodman
,
H.
,.
2012
, “
A Wellbore Stability Model for Formations With Anisotropic Rock Strengths
,”
J. Pet. Sci. Eng.
,
96–97
, pp.
109
119
.10.1016/j.petrol.2012.08.010
6.
Al-Ajmi
,
A. M.
, and
Al-Harthy
,
M. H.
,
2010
, “
Probabilistic Wellbore Collapse Analysis
,”
J. Pet. Sci. Eng.
,
74
(
3–4
), pp.
171
177
.10.1016/j.petrol.2010.09.001
7.
Gao
,
X.
,
Yan
,
E.-C.
,
Yeh
,
T.-C. J.
,
Wang
,
Y.
,
Liang
,
Y.
, and
Hao
,
Y.
,.
2018
, “
Reliability Analysis of Hydrologic Containment of Underground Storage of Liquefied Petroleum Gas
,”
Tunnelling Underground Space Technol.
,
79
, pp.
12
26
.10.1016/j.tust.2018.04.037
8.
Song
,
X.
,
Peng
,
C.
,
Li
,
G.
, and Wen, K.,
2016
, “
A Probabilistic Model to Evaluate the Operation Reliability of the Underground System in Underground Gas Storage Transformed From Depleted Gas Reservoir
,”
International Petroleum Technology Conference,
 Bangkok, Thailand, Nov. 14–16.10.2523/IPTC-18664-MS
9.
Wang
,
K.
,
Zhao
,
X.
,
Luo
,
J.
, Dong, B., Li, L., and Cai, K.,
2010
, “
Risk Assessment of Underground Natural Gas Storage Station
,”
ASME
Paper No. IPC2010-31554.10.1115/IPC2010-31554
10.
Ingraffea
,
A. R.
,
Wells
,
M. T.
,
Santoro
,
R. L.
, and
Shonkoff
,
S. B. C.
,.
2014
, “
Assessment and Risk Analysis of Casing and Cement Impairment in Oil and Gas Wells in Pennsylvania, 2000-2012
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
30
), pp.
10955
10960
.10.1073/pnas.1323422111
11.
Aven
,
T.
,
Vinnem
,
J. E.
, and
Wiencke
,
H. S.
,
2007
, “
A Decision Framework for Risk Management, With Application to the Offshore Oil and Gas Industry
,”
Reliab. Eng. Syst. Saf.
,
92
(
4
), pp.
433
448
.10.1016/j.ress.2005.12.009
12.
Rios Insua
,
D.
,
Alfaro
,
C.
,
Gomez
,
J.
,
Hernandez-Coronado
,
P.
, and
Bernal
,
F.
,
2018
, “
A Framework for Risk Management Decisions in Aviation Safety at State Level
,”
Reliab. Eng. Syst. Saf.
,
179
, pp.
74
82
.10.1016/j.ress.2016.12.002
13.
Lu
,
W.
,
Su
,
M.
,
Fath
,
B. D.
,
Zhang
,
M.
, and
Hao
,
Y.
,
2016
, “
A Systematic Method of Evaluation of the Chinese Natural Gas Supply Security
,”
Appl. Energy
,
165
, pp.
858
867
.10.1016/j.apenergy.2015.12.120
14.
Zio
,
E.
,
Baraldi
,
P.
, and
Patelli
,
E.
,
2006
, “
Assessment of the Availability of an Offshore Installation by Monte Carlo Simulation
,”
Int. J. Pressure Vessels Piping
,
83
(
4
), pp.
312
320
.10.1016/j.ijpvp.2006.02.010
15.
Cadini
,
F.
,
Luca Agliardi
,
G.
, and
Zio
,
E.
,
2017
, “
A Modeling and Simulation Framework for the Reliability/Availability Assessment of a Power Transmission Grid Subject to Cascading Failures Under Extreme Weather Conditions
,”
Appl. Energy
,
185
, pp.
267
279
.10.1016/j.apenergy.2016.10.086
16.
Mathews
,
T. S.
,
Ramakrishnan
,
M.
,
Parthasarathy
,
U.
,
Arul
,
A. J.
, and
Kumar
,
C. S.
,.
2008
, “
Functional Reliability Analysis of Safety Grade Decay Heat Removal System of Indian 500MWe PFBR
,”
Nucl. Eng. Des.
,
238
(
9
), pp.
2369
2376
.10.1016/j.nucengdes.2008.02.012
17.
Li
,
J.
,
Qin
,
C.
,
Yan
,
M.
,
Ma
,
J.
, and
Yu
,
J.
,
2016
, “
Hydraulic Reliability Analysis of an Urban Loop High-Pressure Gas Network
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
372
378
.10.1016/j.jngse.2015.12.010
18.
Li
,
G.
,
Bie
,
Z.
,
Kou
,
Y.
,
Jiang
,
J.
, and
Bettinelli
,
M.
,
2016
, “
Reliability Evaluation of Integrated Energy Systems Based on Smart Agent Communication
,”
Appl. Energy
,
167
, pp.
397
406
.10.1016/j.apenergy.2015.11.033
19.
Bo
,
H. L.
,
2007
, “
On the Statistical Modeling and Analysis of Repairable Systems
,”
Qual. Control Appl. Stat.
,
53
(
4
), pp.
97
100
.10.1214/088342306000000448
20.
Lampe
,
B. C.
, and
Mccartney
,
J. S.
,
2012
, “
Thermal Modeling of a Mechanical Integrity Test Performed on an Underground Storage Cavern Well
,”
Geocongress
, Oakland, CA, Mar. 25–29, pp.
3189
3198
10.1061/9780784412121.326.
21.
Bérest
,
P.
,
Brouard
,
B.
,
Djakeun-Djizanne
,
H.
, and
Hévin
,
G.
,.
2014
, “
Thermomechanical Effects of a Rapid Depressurization in a Gas Cavern
,”
Acta Geotech.
,
9
(
1
), pp.
181
186
.10.1007/s11440-013-0233-8
22.
Townsend
,
J.
,
Badar
,
M. A.
, and
Szekerces
,
J.
,
2016
, “
Updating Temperature Monitoring on Reciprocating Compressor Connecting Rods to Improve Reliability
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
566
573
.10.1016/j.jestch.2015.09.012
23.
Joubert
,
A.
,
Laborde
,
J. C.
,
Bouilloux
,
L.
,
Chazelet
,
S.
, and
Thomas
,
D.
,
2011
, “
Modelling the Pressure Drop Across HEPA Filters During Cake Filtration in the Presence of Humidity
,”
Chem. Eng. J.
,
166
(
2
), pp.
616
623
.10.1016/j.cej.2010.11.033
24.
Mann
,
A. W.
, and
Ayala
,
L. F.
,
2009
, “
Intelligent Design and Modelling of Natural Gas Storage Facilities
,”
Int. J. Modell. Simul.
,
29
(
2
), pp.
214
223
.10.1080/02286203.2009.11442527
25.
Zhang
,
S.
, and
Zhou
,
W.
,
2012
, “
An Efficient Methodology for the Reliability Analysis of Corroding Pipelines
,”
International Pipeline Conference
, Calgary, AB, Canada, Sept. 24–28, pp.
683
692
.10.1115/IPC2012-90482
26.
Gong
,
C.
, and
Zhou
,
W.
,
2017
, “
First-Order Reliability Method-Based System Reliability Analyses of Corroding Pipelines Considering Multiple Defects and Failure Modes
,”
Struct. Infrastruct. Eng.
, 13(11), pp.
1
11
.10.1080/15732479.2017.1285330
27.
Zio
,
E.
,
Apostolakis
,
G. E.
, and
Pedroni
,
N.
,
2010
, “
Quantitative Functional Failure Analysis of a thermal–Hydraulic Passive System by Means of Bootstrapped Artificial Neural Networks
,”
Ann. Nucl. Energy
,
37
(
5
), pp.
639
649
.10.1016/j.anucene.2010.02.012
28.
Stavropoulou
,
M.
,
Papanastasiou
,
P.
, and
Vardoulakis
,
I.
,
1998
, “
Coupled Wellbore Erosion and Stability Analysis
,”
Int. J. Numer. Anal. Methods Geomech.
,
22
(
9
), pp.
749
769
.10.1002/(SICI)1096-9853(199809)22:9<749::AID-NAG944>3.0.CO;2-K
29.
Coit
,
D. W.
,
Chatwattanasiri
,
N.
,
Wattanapongsakorn
,
N.
, and
Konak
,
A.
,
2015
, “
Dynamic k-Out-of-n, System Reliability With Component Partnership
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
82
92
.10.1016/j.ress.2015.01.004
30.
Shan
,
X.
,
Wang
,
P.
, and
Lu
,
W.
,
2017
, “
The Reliability and Availability Evaluation of Repairable District Heating Networks Under Changeable External Conditions
,”
Appl. Energy
,
203
, pp.
686
695
.10.1016/j.apenergy.2017.06.081
31.
Ligen
,
T.
,
Jieming
,
W.
, and
Fengjuan
,
B. A. I.
,
2014
, “
Inventory Forecast of Underground Gas Storage Based on Modified Material Balance Equation
,”
Pet. Explor. Develop.
,
41
(
4
), pp.
528
532
.10.1016/s1876-3804(14)60062-8
32.
Liangbiao
,
O.
,
Sepehr
,
A.
, and
Khalid
,
A.
,
1998
, “
A Single-Phase Wellbore-Flow Model for Horizontal, Vertical and Slanted Wells
,”
SPE J.
, 3(2), pp.
124
133
.https://www.tib.eu/en/search/id/BLSE%3ARN047522780/A-Single-Phase-Wellbore-Flow-Model-for-Horizontal/
33.
Evans
,
D. J.
,
2007
, “
An Appraisal of Underground Gas Storage Technologies and Incidents, for the Development of Risk Assessment Methodology
,”
J. Fuel Cell Technol.
,
6
(
49
), pp.
97
107
.https://www.hse.gov.uk/research/rrpdf/rr605.pdf
You do not currently have access to this content.